A (first-order) differential equation

$$\dot{x} = f(x,t)$$

is called **separable** if the function f has the form

$$f(x,t) = F(x) \cdot G(t)$$

(so the x-dependence and the t-dependence can be 'separated' into a product). Separable differential equations are solvable (in a certain sense, not necessarily with an explicit formula for the solution).

The following differential equations are separable:

1)

$$\dot{x} = t \cdot (x^2 + 1)$$

Solution. Writing in Leibniz notation, we rearrange

$$\frac{dx}{dt} = t(x^2 + 1)$$

$$\frac{dx}{x^2 + 1} = tdt$$

$$\int \frac{dx}{x^2 + 1} = \int tdt$$

$$\arctan(x) = \frac{1}{2}t^2 + c$$

$$x(t) = \tan\left(\frac{1}{2}t^2 + c\right)$$

Here c is some constant number. If we choose an initial condition $x(0) = x_0$, then we can solve for a specific c and get a formula for a trajectory starting at x_0 .

For instance, if we want x(1) = 1, then we need

$$\tan\left(\frac{1}{2} + c\right) = 1$$

or

2)

$$c = \frac{\pi}{4} - \frac{1}{2}$$

So our final solution is

$$x(t) = \tan\left(\frac{1}{2}t^2 + \frac{\pi}{4} - \frac{1}{2}\right)$$

 $\dot{x} = (t+1)x$

Solution. Again, we adopt Leibniz notation:

$$\frac{dx}{dt} = (t+1)x$$

$$\frac{dx}{x} = (t+1)dt$$

$$\int \frac{dx}{x} = \int (t+1)dt$$

$$\ln(|x|) = \frac{1}{2}t^2 + t + c$$

$$x(t) = Ce^t e^{\frac{1}{2}t^2}$$

or

$$x(t) = Ce^{\frac{1}{2}t^2 + t}$$

3) (Switching notation:)

$$y' = \frac{e^x}{y}$$

Solution. As above:

$$\frac{dy}{dx} = \frac{e^x}{y}$$

$$ydy = e^x dx$$

$$\int ydy = \int e^x dx$$

$$\frac{1}{2}y^2 = e^x + c$$

$$y(x) = \pm \sqrt{2e^x + k}$$