
In this chapter� we study exponential functions. These are functions like 
f 1x 2  2x, where the independent variable is in the exponent. Exponential 
functions are used in modeling many real-world phenomena, such as the 
growth of a population, the growth of an investment that earns compound 
interest, or the decay of a radioactive substance. Once an exponential 
model has been obtained, we can use the model to predict the size of a 
population, calculate the amount of an investment, or find the amount of a 
radioactive substance that remains. The inverse functions of exponential 
functions are called logarithmic functions. With exponential models and 
logarithmic functions we can answer questions such as these: When will 
my city be as crowded as the city street pictured here?  When will my 
bank account have a million dollars? When will radiation from a 
radioactive spill decay to a safe level?

In the Focus on Modeling at the end of the chapter we learn how to fit 
exponential and power curves to data.
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330  CHAPTER 4  ■  Exponential and Logarithmic Functions

4.1  Exponential Functions
■  Exponential Functions  ■ G raphs of Exponential Functions  ■ C ompound Interest

In this chapter we study a new class of functions called exponential functions. For example,

f 1x 2  2x

is an exponential function (with base 2). Notice how quickly the values of this function 
increase.

 f 13 2  23  8

 f 110 2  210  1024

 f 130 2  230  1,073,741,824

Compare this with the function g1x 2  x2, where g130 2  302  900. The point is that 
when the variable is in the exponent, even a small change in the variable can cause a 
dramatic change in the value of the function.

■  Exponential Functions
To study exponential functions, we must first define what we mean by the exponential 
expression ax when x is any real number. In Section 1.2 we defined ax for a  0 and x 
a rational number, but we have not yet defined irrational powers. So what is meant by 
5!3 or 2p? To define ax when x is irrational, we approximate x by rational numbers.

For example, since

!3 < 1.73205. . .

is an irrational number, we successively approximate a!3 by the following rational powers:

a1.7, a1.73, a1.732, a1.7320, a1.73205, . . .

Intuitively, we can see that these rational powers of a are getting closer and closer to 
a!3. It can be shown by using advanced mathematics that there is exactly one number 
that these powers approach. We define a!3 to be this number.

For example, using a calculator, we find

 5!3 < 51.732

 < 16.2411. . .

The more decimal places of !3 we use in our calculation, the better our approximation 
of 5!3.

It can be proved that the Laws of Exponents are still true when the exponents are real 
numbers.

Exponential Functions

The exponential function with base a is defined for all real numbers x by

f 1x 2  ax

where a  0 and a ? 1.

We assume that a 2 1 because the function f 1x 2  1x  1 is just a constant func-
tion. Here are some examples of exponential functions:

f 1x 2  2x  g1x 2  3x  h1x 2  10 x

The Laws of Exponents are listed on 
page 14.

Base 2 Base 3 Base 10
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SECTION 4.1  ■  Exponential Functions  331

Example 1  ■  Evaluating Exponential Functions
Let f 1x 2  3x, and evaluate the following:

(a)	 f 15 2 	 (b)	 f A 
2
3B

(c)	 f 1p 2 	 (d)	 f A!2B
Solution    We use a calculator to obtain the values of f.

			   Calculator keystrokes	 Output

(a)	 f 15 2  35  243	 3  ^  5  enter 	 243

(b)	 f A 
2
3B  32/3 < 0.4807	 3  ^  (  (_)  2  4  3  )  enter 	 0.4807498

(c)	 f 1p 2  3p < 31.544	 3  ^  p  enter 	 31.5442807

(d)	 f A!2 B  3!2 < 4.7288	 3  ^  1  2  enter 	 4.7288043

Now Try Exercise 7	 ■

■ G raphs of Exponential Functions
We first graph exponential functions by plotting points. We will see that the graphs of 
such functions have an easily recognizable shape.

Example 2  ■  Graphing Exponential Functions by Plotting Points
Draw the graph of each function.

(a)	 f 1x 2  3x                (b)  g1x 2  a 1

3
b

x

Solution    We calculate values of f 1x 2  and g1x 2  and plot points to sketch the graphs 
in Figure 1.

x f xxc 5 3x gxxc 5 x 1 

3c
x

3 	 1
 27 

	 27
2 	 1

 9 
	 9

1 	 1
 3 

	 3
0 	 1 	 1
1 	 3 	 1

 3 

2 	 9 	 1
 9 

3 	 27 	 1
 27 0 x

y

1

1

y=3˛y=!  @˛1
3

Figure 1

Notice that

g1x 2  a 1

3
b

x


1

3x  3x  f 1x 2

so we could have obtained the graph of g from the graph of f by reflecting in the 
y-axis.

Now Try Exercise 17	 ■

Figure 2 shows the graphs of the family of exponential functions f 1x 2  ax for 
various values of the base a. All of these graphs pass through the point 10, 1 2  because 

Reflecting graphs is explained in  
Section 2.6.
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332  CHAPTER 4  ■  Exponential and Logarithmic Functions

a0  1 for a 2 0. You can see from Figure 2 that there are two kinds of exponential 
functions: If 0  a  1, the exponential function decreases rapidly. If a  1, the func-
tion increases rapidly (see the margin note).

0 x

y

1

2

y=2˛y=5˛y=10˛ y=3˛y=!  @˛1
5y=!  @˛1

2 y=!  @˛1
3 y=!  @˛1

10

Figure 2  A family of exponential 
functions

The x-axis is a horizontal asymptote for the exponential function f 1x 2  ax. This is 
because when a  1, we have ax S 0 as xS` , and when 0  a  1, we have  
ax S 0 as xS `  (see Figure 2). Also, ax  0 for all x [ R, so the function f 1x 2  ax 
has domain R and range 10, ` 2 . These observations are summarized in the following box.

Graphs of Exponential Functions

The exponential function

f 1x 2  ax  a  0, a ? 1

has domain R and range 10, ` 2 . The line y  0 (the x-axis) is a horizontal 
asymptote of f. The graph of f has one of the following shapes.

Ï=a˛ for a>1 Ï=a˛ for 0<a<1

0 x

y

(0, 1)

0 x

y

(0, 1)

Example 3  ■  Identifying Graphs of Exponential Functions
Find the exponential function f 1x 2  a 

x whose graph is given.

(a) 	 	 (b)

	
0 x

y
(2, 25)

5

_1 1 2 0 x

y

1

_3

1
8!3,   @

3

To see just how quickly f 1x 2  2x  
increases, let’s perform the following 
thought experiment. Suppose we  
start with a piece of paper that is a 
thousandth of an inch thick, and we 
fold it in half 50 times. Each time we 
fold the paper, the thickness of the  
paper stack doubles, so the thickness  
of the resulting stack would be 
250/1000 inches. How thick do you 
think that is? It works out to be more 
than 17 million miles!

See Section 3.6, page 295, where the  
arrow notation used here is explained.
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SECTION 4.1  ■  Exponential Functions  333

Solution

(a)	 �Since f 12 2  a2  25, we see that the base is a  5. So f 1x 2  5x.

(b)	 �Since f 13 2  a3  1
8, we see that the base is a  1

2. So f 1x 2  A12B x.
Now Try Exercise 21	 ■

In the next example we see how to graph certain functions, not by plotting points, 
but by taking the basic graphs of the exponential functions in Figure 2 and applying the 
shifting and reflecting transformations of Section 2.6.

Example 4  ■  Transformations of Exponential Functions
Use the graph of f 1x 2  2x to sketch the graph of each function. State the domain, 
range, and asymptote.

(a)	 g1x 2  1  2x
        (b)  h1x 2  2x

        (c)  k1x 2  2x1

Solution

(a)	 �To obtain the graph of g1x 2  1  2x, we start with the graph of f 1x 2  2x and 
shift it upward 1 unit to get the graph shown in Figure 3(a). From the graph we 
see that the domain of g is the set R of real numbers, the range is the interval 
11,  ` 2 , and the line y  1 is a horizontal asymptote.

(b)	 �Again we start with the graph of f 1x 2  2x, but here we reflect in the x-axis to 
get the graph of h1x 2  2x shown in Figure 3(b). From the graph we see that 
the domain of h is the set R of all real numbers, the range is the interval 1`,  0 2 , 
and the line y  0 is a horizontal asymptote.

(c)	 �This time we start with the graph of f 1x 2  2x and shift it to the right by 1 unit 
to get the graph of k1x 2  2x1 shown in Figure 3(c). From the graph we see that 
the domain of k is the set R of all real numbers, the range is the interval 10,  ` 2 , 
and the line y  0 is a horizontal asymptote.

0 x

y

(c)

1

y=2˛

y=2˛–¡11

0 x

y

(b)

1

y=2˛

y=_2˛_1
0 x

y

y=2˛

(a)

1

y=1+2˛

2

Horizontal
asymptote

Figure 3

Now Try Exercises 27, 29, and 31	 ■

Example 5  ■  Comparing Exponential and Power Functions
Compare the rates of growth of the exponential function f 1x 2  2x and the power  
function g1x 2  x2 by drawing the graphs of both functions in the following viewing 
rectangles.

(a)	 30, 3 4  by 30, 8 4             (b)  30, 6 4  by 30, 25 4             (c)  30, 20 4  by 30, 1000 4

Shifting and reflecting of graphs are  
explained in Section 2.6.
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334  CHAPTER 4  ■  Exponential and Logarithmic Functions

Solution

(a)	 �Figure 4(a) shows that the graph of g1x 2  x2 catches up with, and becomes 
higher than, the graph of f 1x 2  2x at x  2.

(b)	 �The larger viewing rectangle in Figure 4(b) shows that the graph of f 1x 2  2x 
overtakes that of g1x 2  x2 when x  4.

(c)	 �Figure 4(c) gives a more global view and shows that when x is large, f 1x 2  2x is 
much larger than g1x 2  x2.

8

0 3

(a)

˝=≈
Ï=2x

1000

0 20

(c)

˝=≈

Ï=2x

25

0 6

(b)

˝=≈
Ï=2x

Figure 4

Now Try Exercise 45	 ■

■ C ompound Interest
Exponential functions occur in calculating compound interest. If an amount of money 
P, called the principal, is invested at an interest rate i per time period, then after one 
time period the interest is Pi, and the amount A of money is

A  P  Pi  P11  i 2
If the interest is reinvested, then the new principal is P11  i 2 , and the amount after 
another time period is A  P11  i 2 11  i 2  P11  i 2 2. Similarly, after a third time 
period the amount is A  P11  i 2 3. In general, after k periods the amount is

A  P11  i 2 k
Notice that this is an exponential function with base 1  i.

If the annual interest rate is r and if interest is compounded n times per year, then in 
each time period the interest rate is i  r/n, and there are nt time periods in t years. This 
leads to the following formula for the amount after t years.

Compound Interest

Compound interest is calculated by the formula

A1 t 2  Pa 1 
r
n
b

nt

where	  A1 t 2  amount after t years

	  P  principal

	  r  interest rate per year

	  n  number of times interest is compounded per year

	  t  number of years

r is often referred to as the nominal  
annual interest rate.
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SECTION 4.1  ■  Exponential Functions  335

Example 6  ■  Calculating Compound Interest
A sum of $1000 is invested at an interest rate of 12% per year. Find the amounts in  
the account after 3 years if interest is compounded annually, semiannually, quarterly, 
monthly, and daily.

Solution    We use the compound interest formula with P  $1000, r  0.12, and t  3.

Compounding n Amount after 3 years

Annual     1 1000a1 
0.12

1
b

1132  

 $1404.93

Semiannual     2 1000a1 
0.12

2
b

2132  

 $1418.52

Quarterly     4 1000a1 
0.12

4
b

4132  

 $1425.76

Monthly   12 1000a1 
0.12

12
b

12132  

 $1430.77

Daily 365 1000a1 
0.12

365
b

365132 
 $1433.24

Now Try Exercise 57	 ■

If an investment earns compound interest, then the annual percentage yield 
(APY) is the simple interest rate that yields the same amount at the end of one year.

Example 7  ■  Calculating the Annual Percentage Yield
Find the annual percentage yield for an investment that earns interest at a rate of  
6% per year, compounded daily.

SOLUTION    After one year, a principal P will grow to the amount

A  Pa 1 
0.06

365
b

365

 P11.06183 2

The formula for simple interest is

A  P11  r 2
Comparing, we see that 1  r  1.06183, so r  0.06183. Thus the annual percent-
age yield is 6.183%.

Now Try Exercise 63	 ■

Simple interest is studied in Section 1.7.

Discovery Project

So You Want to Be a Millionaire?

In this project we explore how rapidly the values of an exponential function 
increase by examining some real-world situations. For example, if you save a 
penny today, two pennies tomorrow, four pennies the next day, and so on, how 
long do you have to continue saving in this way before you  become a million-
aire? You can find out the surprising answer to this and other questions by com-
pleting this discovery project. You can find the project at www.stewartmath.com.
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336  CHAPTER 4  ■  Exponential and Logarithmic Functions

concepts
	 1.	 The function f 1x 2  5x is an exponential function with base 

		     ; f 12 2     , f 10 2     , 

		  f 12 2     , and f 16 2     .

	 2.	 Match the exponential function with one of the graphs 
labeled I, II, III, or IV, shown below.

(a)	 f 1x 2  2x	 (b)	 f 1x 2  2x          

(c)	 f 1x 2  2x	 (d)	 f 1x 2  2x

I y 

x 0 1 
2 

y

x0 1
2

y 

x 0 1 
2

II

III y

x0 1
2

IV

	 3.	 (a)	� To obtain the graph of g1x 2  2x  1, we start with

			   the graph of f 1x 2  2x and shift it    
	 (upward/downward) 1 unit.

(b)	� To obtain the graph of h1x 2  2x1, we start with the 

graph of f 1x 2  2x and shift it to the   
(left/right) 1 unit.

	 4.	 In the formula A1 t 2  PA1  r
n Bnt

 for compound interest the 

		  letters P, r, n, and t stand for    ,    , 

		     , and    , respectively, and 

		  A1 t 2  stands for    . So if $100 is invested at an  
interest rate of 6% compounded quarterly, then the amount 

		  after 2 years is    .

	 5.	 The exponential function f 1x 2  A12 Bx has the 

		    asymptote y     . This means 

		  that as xS ` , we have A12 Bx S    . 

	 6.	 The exponential function f 1x 2  A12 Bx  3 has the 

		    asymptote y     . This means 

		  that as xS ` , we have A12 Bx  3S    .

skills
7–10  ■  Evaluating Exponential Functions    Use a calculator to 
evaluate the function at the indicated values. Round your answers 
to three decimals.

	 7.	 f 1x 2  4x;  f A12 B, f A!5 B, f 12 2 , f 10.3 2
	 8.	 f 1x 2  3x1;  f A12 B, f 12.5 2 , f 11 2 , f A14 B
	 9.	 g1x 2  A13 B x1

;  gA12 B, gA!2 B, g13.5 2 , g11.4 2
	10.	 g1x 2  A43 B3x

;  gA1
2 B, gA!6 B, g13 2 , gA43 B

11–16  ■  Graphing Exponential Functions    Sketch the graph of the 
function by making a table of values. Use a calculator if necessary.

	11.	 f 1x 2  2x	 12.	 g1x 2  8x

	13.	 f 1x 2  A13 B x	 14.	 h1x 2  11.1 2 x
	15.	 g1x 2  311.3 2 x	 16.	 h1x 2  2A14 Bx

17–20  ■  Graphing Exponential Functions    Graph both functions 
on one set of axes.

	17.	 f 1x 2  2x and g1x 2  2x

	18.	 f 1x 2  3x and g1x 2  A13 B
x

	19.	 f 1x 2  4x and g1x 2  7x

	20.	 f 1x 2  A34 Bx  and  g1x 2  1.5x

21–24  ■  Exponential Functions from a Graph    Find the expo-
nential function f 1x 2  ax whose graph is given.

	21.			   22.	 22.	y

0 x3_3

1

(2, 9)
		

x

y

0 3_3

1
5!_1,   @

1

	23.		  24.	

1
16!2,    @

x0 3_3

y

1

�
x

y

0 3
1

_3

(_3, 8)

25–26  ■  Exponential Functions from a Graph    Match the expo-
nential function with one of the graphs labeled I or II.

	25.	 f 1x 2  5x1	 26.	 f 1x 2  5x  1

	

I y

x0 1

1

	

y

x0 1

1

II

4.1  Exercises
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SECTION 4.1  ■  Exponential Functions  337

27–40  ■  Graphing Exponential Functions    Graph the function, 
not by plotting points, but by starting from the graphs in Figure 2. 
State the domain, range, and asymptote.

	27.	 g1x 2  2x  3	 28.	 h1x 2  4  A12 Bx

	29.	 f 1x 2  3x	 30.	 f 1x 2  10x

	31.	 f 1x 2  10x3
	 32.	 g1x 2  2x3

33.	 y  5x  1	 34.	 h1x 2  6  3x

	35.	 y  2  A13 Bx 	 36.	 y  5x  3

	37.	 h1x 2  2x4  1	 38.	 y  3  10x1

39.	 g1x 2  1  3x	 40.	 y  3  A15 Bx

41–42  ■  Comparing Exponential Functions    In these exercises 
we compare the graphs of two exponential functions.

41.	 (a)	 Sketch the graphs of f 1x 2  2x and g1x 2  312x 2 .
(b)	 How are the graphs related?

	42.	 (a)	 Sketch the graphs of f 1x 2  9x/2 and g1x 2  3x.

(b)	� Use the Laws of Exponents to explain the relationship  
between these graphs.

43–44  ■  Comparing Exponential and Power Functions    Com-
pare the graphs of the power function f and exponential function 
g by evaluating both of them for x  0, 1, 2, 3, 4, 6, 8, and 10. 
Then draw the graphs of f and g on the same set of axes.

	43.	 f 1x 2  x3;  g1x 2  3x 	 44.	 f 1x 2  x4;  g1x 2  4x 

45–46  ■  Comparing Exponential and Power Functions    In these 
exercises we use a graphing calculator to compare the rates of 
growth of the graphs of a power function and an exponential 
function.

	45.	 (a)	� Compare the rates of growth of the functions f 1x 2  2x 
and g1x 2  x5 by drawing the graphs of both functions 
in the following viewing rectangles.

	 (i)	 30, 5 4  by 30, 20 4
	 (ii)	 30, 25 4  by 30, 107 4
	 (iii)	 30, 50 4  by 30, 108 4

(b)	� Find the solutions of the equation 2x  x5, rounded to 
one decimal place.

	46.	 (a)	� Compare the rates of growth of the functions f 1x 2  3x 
and g1x 2  x4 by drawing the graphs of both functions 
in the following viewing rectangles:

	 (i)	 34, 44 by 30, 204      
	 (ii)	 30, 104 by 30, 50004
	 (iii)	 30, 204 by 30, 1054

(b)	� Find the solutions of the equation 3x  x4, rounded to 
two decimal places.

Skills Plus
47–48  ■  Families of Functions    Draw graphs of the given family 
of functions for c  0.25, 0.5, 1, 2, 4. How are the graphs related?

	47.	 f 1x 2  c2x
	 48.	 f 1x 2  2cx

49–50  ■  Getting Information from a Graph    Find, rounded to 
two decimal places, (a) the intervals on which the function is 
increasing or decreasing and (b) the range of the function.

	49.	 y  10xx2

	 50.	  y  x2x

51–52  ■  Difference Quotients    These exercises involve a differ-
ence quotient for an exponential function.

	51.	 If f 1x 2  10x, show that 

f 1x  h 2  f 1x 2
h

 10x a 10h  1

h
b

	52.	 If f 1x 2  3x1, show that 

f 1x  h 2  f 1x 2
h

 3x1 a 3h  1

h
b

applications
53.	 Bacteria Growth    A bacteria culture contains 1500 bacteria 

initially and doubles every hour.

(a)	� Find a function N that models the number of bacteria 
after t hours.

(b)	 Find the number of bacteria after 24 hours.

	54.	 Mouse Population    A certain breed of mouse was introduced 
onto a small island with an initial population of 320 mice, 
and scientists estimate that the mouse population is doubling 
every year.  

(a)	� Find a function N that models the number of mice after  
t years.

(b)	 Estimate the mouse population after 8 years.

55–56  ■  Compound Interest    An investment of $5000 is depos-
ited into an account in which interest is compounded monthly. 
Complete the table by filling in the amounts to which the invest-
ment grows at the indicated times or interest rates.

	55.	 r  4%	 56.	 t  5 years

	

Time 
(years) Amount

1
2
3
4
5
6

Rate 
per year Amount

1%
2%
3%
4%
5%
6%

	57.	 Compound Interest    If $10,000 is invested at an interest rate 
of 3% per year, compounded semiannually, find the value of 
the investment after the given number of years.

(a)	 5 years	 (b)	 10 years	 (c)  15 years

58.	 Compound Interest    If $2500 is invested at an interest rate 
of 2.5% per year, compounded daily, find the value of the 
investment after the given number of years.

(a)	 2 years	 (b)	 3 years	 (c)  6 years

59.	 Compound Interest    If $500 is invested at an interest rate of 
3.75% per year, compounded quarterly, find the value of the 
investment after the given number of years.

(a)	 1 year	 (b)	 2 years	 (c)  10 years

	60.	 Compound Interest    If $4000 is borrowed at a rate of 5.75% 
interest per year, compounded quarterly, find the amount due 
at the end of the given number of years.

(a)	 4 years	 (b)	 6 years	 (c)  8 years
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338  CHAPTER 4  ■  Exponential and Logarithmic Functions

61–62  ■  Present Value    The present value of a sum of money 
is the amount that must be invested now, at a given rate of inter-
est, to produce the desired sum at a later date.

	61.	� Find the present value of $10,000 if interest is paid at a  
rate of 9% per year, compounded semiannually, for  
3 years.

	62.	� Find the present value of $100,000 if interest is paid  
at a rate of 8% per year, compounded monthly, for  
5 years.

	63.	 Annual Percentage Yield    Find the annual percentage  
yield for an investment that earns 8% per year, compounded 
monthly.

	64.	 Annual Percentage Yield    Find the annual percentage  
yield for an investment that earns 5 1

2% per year, compounded 
quarterly.

DiSCUSS  ■ DI SCOVER  ■  PROVE  ■  WRITE
	65.	 DISCUSS  ■ DI SCOVER:  Growth of an Exponential Function     

Suppose you are offered a job that lasts one month, and you 
are to be very well paid. Which of the following methods of 
payment is more profitable for you?

(a)	 One million dollars at the end of the month

(b)	� Two cents on the first day of the month, 4 cents on the 
second day, 8 cents on the third day, and, in general,  
2 n cents on the nth day

	66.	 DISCUSS  ■ DI SCOVER:  The Height of the Graph of an  
Exponential Function    Your mathematics instructor asks  
you to sketch a graph of the exponential function

		  f 1x 2  2x

		  for x between 0 and 40, using a scale of 10 units to one inch. 
What are the dimensions of the sheet of paper you will need 
to sketch this graph?

4.2  The Natural Exponential Function
■  The Number e  ■  The Natural Exponential Function  ■ C ontinuously Compounded Interest

Any positive number can be used as a base for an exponential function. In this section 
we study the special base e, which is convenient for applications involving calculus. 

■  The Number e
The number e is defined as the value that 11  1/n 2 n approaches as n becomes large. 
(In calculus this idea is made more precise through the concept of a limit.) The table 
shows the values of the expression 11  1/n 2 n for increasingly large values of n. 

n a1 1
1
n
b

n

1 2.00000
5 2.48832

10 2.59374
100 2.70481

1000 2.71692
10,000 2.71815

100,000 2.71827
1,000,000 2.71828

It appears that, rounded to five decimal places, e ^ 2.71828; in fact, the approximate 
value to 20 decimal places is

e < 2.71828182845904523536

It can be shown that e is an irrational number, so we cannot write its exact value in 
decimal form.

■  The Natural Exponential Function
The number e is the base for the natural exponential function. Why use such a strange 
base for an exponential function? It might seem at first that a base such as 10 is easier 
to work with. We will see, however, that in certain applications the number e is the best 

The notation e was chosen by Leonhard 
Euler (see page 63), probably because it 
is the first letter of the word exponential.

©
 iS

to
ck

ph
ot

o.
co

m
/K

ub
ra

k7
8

The Gateway Arch in St. Louis, Missouri, is 
shaped in the form of the graph of a com-
bination of exponential functions (not a 
parabola, as it might first appear). 
Specifically, it is a catenary, which is the 
graph of an equation of the form

y  a1ebx  ebx 2
(see Exercises 17 and 19). This shape was 
chosen because it is optimal for distribut-
ing the internal structural forces of the 
arch. Chains and cables suspended 
between two points (for example, the 
stretches of cable between pairs of tele-
phone poles) hang in the shape of a 
catenary.
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SECTION 4.2  ■  The Natural Exponential Function  339

possible base. In this section we study how e occurs in the description of compound 
interest.

The Natural Exponential Function 

The natural exponential function is the exponential function

f 1x 2  ex

with base e. It is often referred to as the exponential function.

Since 2  e  3, the graph of the natural exponential function lies between the 
graphs of y  2x and y  3x, as shown in Figure 1.

Scientific calculators have a special key for the function f 1x 2  ex. We use this key 
in the next example.

Example 1  ■  Evaluating the Exponential Function
Evaluate each expression rounded to five decimal places.

(a)	 e3            (b)  2e0.53            (c)  e4.8

Solution    We use the ex  key on a calculator to evaluate the exponential function.

(a)	 e3 ^ 20.08554      (b)  2e0.53 ^ 1.17721      (c)  e4.8 ^ 121.51042

Now Try Exercise 3	 ■

Example 2  ■  Graphing the Exponential Functions
Sketch the graph of each function. State the domain, range, and asymptote.

(a)	 f 1x 2  ex                (b)  g1x 2  3e 0.5x

Solution

(a)	 �We start with the graph of y  ex and reflect in the y-axis to obtain the graph of  
y  ex as in Figure 2. From the graph we see that the domain of f is the set R of 
all real numbers, the range is the interval 10, ` 2 , and the line y  0 is a horizon-
tal asymptote.

(b)	 �We calculate several values, plot the resulting points, then connect the points with 
a smooth curve. The graph is shown in Figure 3. From the graph we see that the 
domain of g is the set R of all real numbers, the range is the interval 10, ` 2 , and 
the line y  0 is a horizontal asymptote.

Figure 3

0 x

y

3

3

y=3e0.5x

_3

6

9

12x fxxc 5 3e0.5x

3   0.67
2   1.10
1   1.82

0   3.00
1   4.95
2   8.15
3 13.45

Now Try Exercises 5 and 7	 ■

0 x

y

1

y=3˛

1

y=2˛

y=e˛

Figure 1  Graph of the natural  
exponential function

0 x

y

1

1

y=e˛y=e–˛

Figure 2
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340  CHAPTER 4  ■  Exponential and Logarithmic Functions

Example 3  ■  An Exponential Model for the Spread of a Virus
An infectious disease begins to spread in a small city of population 10,000. After t days, 
the number of people who have succumbed to the virus is modeled by the function

√ 1 t 2 
10,000

5  1245e0.97t

(a)	 How many infected people are there initially (at time t  0)?

(b)	 Find the number of infected people after one day, two days, and five days.

(c)	 Graph the function √, and describe its behavior.

Solution

(a)	 �Since √ 10 2  10,000/15  1245e0 2  10,000/1250  8, we conclude that 8 
people initially have the disease.

(b)	 �Using a calculator, we evaluate √ 11 2 , √ 12 2 , and √ 15 2  and then round off to obtain 
the following values.

Days Infected people

1   21
2   54
5 678

(c)	 �From the graph in Figure 4 we see that the number of infected people first rises 
slowly, then rises quickly between day 3 and day 8, and then levels off when 
about 2000 people are infected.

Now Try Exercise 27	 ■

The graph in Figure 4 is called a logistic curve or a logistic growth model. Curves 
like it occur frequently in the study of population growth. (See Exercises 27–30.)

■ C ontinuously Compounded Interest
In Example 6 of Section 4.1 we saw that the interest paid increases as the number of 
compounding periods n increases. Let’s see what happens as n increases indefinitely. If 
we let m  n/r, then

A1 t 2  Pa 1 
r
n
b

nt

 P c a 1 
r
n
b

n/r

d
rt

 P c a 1 
1
m
b

m

d
rt

Recall that as m becomes large, the quantity 11  1/m 2m approaches the number e. 
Thus the amount approaches A  Pert. This expression gives the amount when the in-
terest is compounded at “every instant.”

Continuously Compounded Interest

Continuously compounded interest is calculated by the formula

A1 t 2  Pert

where     A1 t 2  amount after t years

	  P  principal

	  r  interest rate per year

	  t  number of years

3000

0 12

Figure 4 

√1 t 2 
10,000

5  1245e0.97t
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SECTION 4.2  ■  The Natural Exponential Function  341

Example 4  ■  Calculating Continuously Compounded Interest
Find the amount after 3 years if $1000 is invested at an interest rate of 12% per year, 
compounded continuously.

Solution    We use the formula for continuously compounded interest with P  $1000, 
r  0.12, and t  3 to get

A13 2  1000e 10.1223  1000e0.36  $1433.33

Compare this amount with the amounts in Example 6 of Section 4.1.

Now Try Exercise 33	 ■

Concepts
	 1.	 The function f 1x 2  ex is called the   exponential 

		  function. The number e is approximately equal to    .

	 2.	 In the formula A1 t 2  Pert for continuously compound inter-

est, the letters P, r , and t stand for    ,    , and 

   , respectively, and A1 t 2  stands for    . So if 
		  $100 is invested at an interest rate of 6% compounded continu-

		  ously, then the amount after 2 years is    .

Skills
3–4  ■  Evaluating Exponential Functions    Use a calculator to 
evaluate the function at the indicated values. Round your answers 
to three decimals.

	 3.	 h1x 2  ex;  h11 2 , h1p 2 , h13 2 , hA!2 B
	 4.	 h1x 2  e3x;  hA13 B, h11.5 2 , h11 2 , h1p 2

5–6  ■  Graphing Exponential Functions    Complete the table of 
values, rounded to two decimal places, and sketch a graph of the 
function.

	 5. 
x f xxc 5 1.5ex

2
1
0.5

0
0.5
1
2

	 6. 
x f xxc 5 4e2x/3

3
2
1

0
1
2
3

7–16  ■  Graphing Exponential Functions    Graph the function, 
not by plotting points, but by starting from the graph of y  ex in 
Figure 1. State the domain, range, and asymptote.

	 7.	 g1x 2  2  ex	   8.	 h1x 2  ex  3

	 9.	 f 1x 2  ex	 10.	 y  1  ex

	11.	 y  ex  1	 12.	 f 1x 2  ex

	13.	 f 1x 2  ex2	 14.	 y  ex3  4

15.	 h1x 2  e 
x1  3	 16.	 g1x 2  ex1  2

Skills plus
	17.	 Hyperbolic Cosine Function    The hyperbolic cosine function 

is defined by

cosh1x 2 
ex  ex

2

(a)	� Sketch the graphs of the functions y  1
2 ex and y  1

2 ex 
on the same axes, and use graphical addition (see Sec- 
tion 2.7) to sketch the graph of y  cosh1x 2 .

(b)	 Use the definition to show that cosh(x)  cosh(x).

	18.	 Hyperbolic Sine Function    The hyperbolic sine function is 
defined by

sinh1x 2 
ex  ex

2

(a)	� Sketch the graph of this function using graphical addition 
as in Exercise 17.

(b)	 Use the definition to show that sinh(x)  sinh(x)

19.	 Families of Functions  
(a) Draw the graphs of the family of functions

f 1x 2 
a

2
 1ex/a  ex/a 2

		 for a  0.5, 1, 1.5, and 2.

(b)	 How does a larger value of a affect the graph?

20.	 The Definition of e    Illustrate the definition of the number e 
by graphing the curve y  11  1/x 2 x and the line y  e on 
the same screen, using the viewing rectangle 30, 404 by 30, 44.

21–22  ■  Local Extrema    Find the local maximum and minimum 
values of the function and the value of x at which each occurs. 
State each answer rounded to two decimal places.

	21.	 g1x 2  x x, x  0

	22.	 g1x 2  ex  e2x

4.2  Exercises
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342  CHAPTER 4  ■  Exponential and Logarithmic Functions

applications
	23.	 Medical Drugs    When a certain medical drug is administered 

to a patient, the number of milligrams remaining in the 
patient’s bloodstream after t hours is modeled by

D1 t 2  50e0.2t

		  How many milligrams of the drug remain in the patient’s 
bloodstream after 3 hours?

	24.	 Radioactive Decay    A radioactive substance decays in such a 
way that the amount of mass remaining after t days is given 
by the function

m1 t 2  13e0.015t

		  where m1 t 2  is measured in kilograms.

(a)	 Find the mass at time t  0.

(b)	 How much of the mass remains after 45 days?

	25.	 Sky Diving    A sky diver jumps from a reasonable height 
above the ground. The air resistance she experiences is pro-
portional to her velocity, and the constant of proportionality 
is 0.2. It can be shown that the downward velocity of the sky 
diver at time t is given by

√ 1 t 2  18011  e0.2t 2
		  where t is measured in seconds (s) and √ 1 t 2  is measured in 

feet per second (ft/s).

(a)	 Find the initial velocity of the sky diver.

(b)	 Find the velocity after 5 s and after 10 s.

(c)	 Draw a graph of the velocity function √1 t 2 .
(d)	� The maximum velocity of a falling object with wind 

resistance is called its terminal velocity. From the  
graph in part (c) find the terminal velocity of this sky 
diver.

√(t)=180(1-e_º.™t)

	26.	 Mixtures and Concentrations    A 50-gal barrel is filled com-
pletely with pure water. Salt water with a concentration of 
0.3 lb/gal is then pumped into the barrel, and the resulting 
mixture overflows at the same rate. The amount of salt in the 
barrel at time t is given by

Q1 t 2  1511  e0.04t 2
		  where t is measured in minutes and Q1 t 2  is measured in 

pounds.

(a)	 How much salt is in the barrel after 5 min?

(b)	 How much salt is in the barrel after 10 min?

(c)	 Draw a graph of the function Q1 t 2 .

(d)	� Use the graph in part (c) to determine the value that the 
amount of salt in the barrel approaches as t becomes 
large. Is this what you would expect?

Q(t)=15(1-e_º.º¢t )

	27.	 Logistic Growth    Animal populations are not capable of 
unrestricted growth because of limited habitat and food sup-
plies. Under such conditions the population follows a logistic 
growth model:

P1 t 2 
d

1  kect

		  where c, d, and k are positive constants. For a certain fish 
population in a small pond d  1200, k  11, c  0.2, and t 
is measured in years. The fish were introduced into the pond 
at time t  0.

(a)	 How many fish were originally put in the pond?

(b)	 Find the population after 10, 20, and 30 years.

(c)	� Evaluate P1 t 2  for large values of t. What value does the 
population approach as tS `? Does the graph shown 
confirm your calculations?

t

P

0 10 20 4030

1200

1000

800

600

400

200

	28.	 Bird Population    The population of a certain species of  
bird is limited by the type of habitat required for nesting.  
The population behaves according to the logistic growth 
model

n1 t 2 
5600

0.5  27.5e0.044t

		  where t is measured in years.

(a)	 Find the initial bird population.

(b)	 Draw a graph of the function n1 t 2 .
(c)	� What size does the population approach as time  

goes on?

71759_ch04_329-400.indd   342 9/16/14   5:23 PM

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



SECTION 4.2  ■  The Natural Exponential Function  343

	29.	 World Population    The relative growth rate of world popula-
tion has been decreasing steadily in recent years. On the basis 
of this, some population models predict that world population 
will eventually stabilize at a level that the planet can support. 
One such logistic model is

P1 t 2 
73.2

6.1  5.9e0.02t

		  where t  0 is the year 2000 and population is measured in 
billions.

(a)	� What world population does this model predict for the 
year 2200? For 2300?

(b)	� Sketch a graph of the function P for the years 2000 to 
2500.

(c)	� According to this model, what size does the world popu-
lation seem to approach as time goes on?

30.	 Tree Diameter    For a certain type of tree the diameter  
D (in feet) depends on the tree’s age t (in years) according  
to the logistic growth model

D1 t 2 
5.4

1  2.9e0.01t

		  Find the diameter of a 20-year-old tree.

t

D

0 100 700300 500

5

4

3

2

1

31–32  ■  Compound Interest    An investment of $7000 is depos-
ited into an account in which interest is compounded continu-
ously. Complete the table by filling in the amounts to which the 
investment grows at the indicated times or interest rates.

	31.	 r  3%	 32.	 t  10 years

		

Time 
(years) Amount

1
2
3
4
5
6

		

Rate  
per year Amount

1%
2%
3%
4%
5%
6%

	33.	 Compound Interest    If $2000 is invested at an interest rate 
of 3.5% per year, compounded continuously, find the value  
of the investment after the given number of years.

(a)	 2 years      

(b)	 4 years      

(c)	 12 years

34.	 Compound Interest    If $3500 is invested at an interest rate 
of 6.25% per year, compounded continuously, find the value 
of the investment after the given number of years.

(a)	 3 years      

(b)	 6 years      

(c)	 9 years

35.	 Compound Interest    If $600 is invested at an interest rate  
of 2.5% per year, find the amount of the investment at the 
end of 10 years for the following compounding methods.

(a)	 Annually      

(b)	 Semiannually  

(c)	 Quarterly      

(d)	 Continuously

36.	 Compound Interest    If $8000 is invested in an account for 
which interest is compounded continuously, find the amount 
of the investment at the end of 12 years for the following 
interest rates.

(a)	 2%      

(b)	 3%      

(c)	 4.5%      

(d)	 7%

37.	 Compound Interest    Which of the given interest rates  
and compounding periods would provide the best 
investment?

(a)	 2 
1
2% per year, compounded semiannually

(b)	 2 
1
4% per year, compounded monthly

(c)	 2% per year, compounded continuously

38.	 Compound Interest    Which of the given interest rates  
and compounding periods would provide the better 
investment?

(a)	 5 
1
8% per year, compounded semiannually

(b)	 5% per year, compounded continuously

39.	 Investment    A sum of $5000 is invested at an interest rate  
of 9% per year, compounded continuously.

(a)	 Find the value A1 t 2  of the investment after t years.

(b)	 Draw a graph of A1 t 2 .
(c)	� Use the graph of A1 t 2  to determine when this investment 

will amount to $25,000.
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344  CHAPTER 4  ■  Exponential and Logarithmic Functions

4.3  Logarithmic Functions
■  Logarithmic Functions  ■ G raphs of Logarithmic Functions  ■ C ommon Logarithms   
■  Natural Logarithms

In this section we study the inverses of exponential functions.

■  Logarithmic Functions
Every exponential function f 1x 2  ax, with a  0 and a 2 1, is a one-to-one function by 
the Horizontal Line Test (see Figure 1 for the case a  1) and therefore has an inverse 
function. The inverse function f 1 is called the logarithmic function with base a and is 
denoted by loga. Recall from Section 2.8 that f1 is defined by

f 
11x 2  y 3 f 1y 2  x

This leads to the following definition of the logarithmic function.

Definition of the Logarithmic Function

Let a be a positive number with a ? 1. The logarithmic function with base a, 
denoted by loga, is defined by

loga x  y 3 ay  x

So loga x is the exponent to which the base a must be raised to give x.

We read loga x  y as “log base a of  
x is y.”

When we use the definition of logarithms to switch back and forth between the 
logarithmic form loga x  y and the exponential form ay  x, it is helpful to notice 
that, in both forms, the base is the same.

Logarithmic form    Exponential form

	 loga x  y	 ay  x

Example 1  ■  Logarithmic and Exponential Forms
The logarithmic and exponential forms are equivalent equations: If one is true, then  
so is the other. So we can switch from one form to the other as in the following 
illustrations.

Logarithmic form Exponential form

log10 100,000  5 105  100,000
log2 8  3 23  8
log2 A18 B  3 23  1

8  
log5 s  r 5r  s

Now Try Exercise 7	 ■

By tradition the name of the logarith-
mic function is loga, not just a single 
letter. Also, we usually omit the paren-
theses in the function notation and 
write

loga1x 2  loga x

Base

ExponentExponent

Base

0 x

y
f(x)=a˛,

a>1

Figure 1  f 1x 2  ax is  
one-to-one.
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SECTION 4.3  ■  Logarithmic Functions  345

It is important to understand that loga x is an exponent. For example, the numbers in 
the right-hand column of the table in the margin are the logarithms (base 10) of the 
numbers in the left-hand column. This is the case for all bases, as the following example 
illustrates.

Example 2  ■  Evaluating Logarithms
(a)	 log10 1000  3	 because    103  1000

(b)	 log2 32  5	 because    25  32

(c)	 log10 0.1  1	 because    101  0.1

(d)	 log16 4  1
2	 because    161/2  4

Now Try Exercises 9 and 11	 ■

When we apply the Inverse Function Property described on page 222 to f 1x 2  ax 
and f 

11x 2  loga x, we get

 loga1ax 2  x  x [ R

 aloga x  x  x  0

We list these and other properties of logarithms discussed in this section.

Properties of Logarithms

Property	 Reason

1.	 loga1  0	 We must raise a to the power 0 to get 1.

2.	 loga a  1	 We must raise a to the power 1 to get a.

3.	 loga a
x  x	 We must raise a to the power x to get ax.

4.	 aloga x  x	 loga x is the power to which a must be raised to get x.

Example 3  ■  Applying Properties of Logarithms
We illustrate the properties of logarithms when the base is 5.

log5 1  0     Property 1        log5 5  1         Property 2

log5 5
8  8    Property 3        5log5 12  12        Property 4

Now Try Exercises 25 and 31	 ■

■ G raphs of Logarithmic Functions
Recall that if a one-to-one function f has domain A and range B, then its inverse function 
f1 has domain B and range A. Since the exponential function f 1x 2  ax with a 2 1 has 
domain R and range 10, ` 2 , we conclude that its inverse function, f 

11x 2  loga x, has 
domain 10, ` 2  and range R.

The graph of f 
11x 2  loga x is obtained by reflecting the graph of f 1x 2  ax in the 

line y  x. Figure 2 shows the case a  1. The fact that y  ax (for a  1) is a very 
rapidly increasing function for x  0 implies that y  loga x is a very slowly increasing 
function for x  1 (see Exercise 102).

Since loga 1  0, the x-intercept of the function y  loga x is 1. The y-axis is a ver-
tical asymptote of y  loga x because loga xS`  as xS 0.

x log10 x

104 4
103 3
102 2
10 1
  1 0
101 1
102 2
103 3
104 4

Inverse Function Property:

f11f 1x 22  x

f 1f11x 22  x

y=a˛,  a>1

y=loga x

y=x

x

y

1

1

Figure 2  Graph of the logarithmic 
function f 1x 2  loga x
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346  CHAPTER 4  ■  Exponential and Logarithmic Functions

Example 4  ■  �Graphing a Logarithmic Function by Plotting Points
Sketch the graph of f 1x 2  log2 x.

SOLUTION    To make a table of values, we choose the x-values to be powers of 2 so 
that we can easily find their logarithms. We plot these points and connect them with a 
smooth curve as in Figure 3.

x log2 x

23 3
22 2
2 1
1 0
21 1
22 2
23 3
24 4

x

y

1
2
3

1 2 4 6 8_1
_2
_3
_4

f(x)=log¤ x

Figure 3

Now Try Exercise 49	 ■

Figure 4 shows the graphs of the family of logarithmic functions with bases 2, 3, 5, 
and 10. These graphs are drawn by reflecting the graphs of y  2x, y  3x, y  5x, and 
y  10x (see Figure 2 in Section 4.1) in the line y  x. We can also plot points as an 
aid to sketching these graphs, as illustrated in Example 4.

y=log2 x 

y=log‹ x 

y=logfi x 

y=log⁄‚ x 

0 x

y

1

1

Figure 4  A family of logarithmic 
functions

In the next two examples we graph logarithmic functions by starting with the basic 
graphs in Figure 4 and using the transformations of Section 2.6.

Example 5  ■  Reflecting Graphs of Logarithmic Functions
Sketch the graph of each function. State the domain, range, and asymptote.

(a)	 g1x 2  log2 x      (b)  h1x 2  log21x 2
Solution

(a)	 �We start with the graph of f 1x 2  log2 x and reflect in the x-axis to get the graph 
of g1x 2  log2 x in Figure 5(a). From the graph we see that the domain of g is 
10, ` 2 , the range is the set R of all real numbers, and the line x  0 is a vertical 
asymptote.
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SECTION 4.3  ■  Logarithmic Functions  347

(b)	 �We start with the graph of f 1x 2  log2 x and reflect in the y-axis to get the graph 
of h1x 2  log21x 2  in Figure 5(b). From the graph we see that the domain of h 
is 1`, 0 2 , the range is the set R of all real numbers, and the line x  0 is a ver-
tical asymptote.

f(x)=log¤ x f(x)=log¤ x

g(x)=_log¤ x
h(x)=log¤(_x)

(a)

x

y

1

1 10

(b)

_1 x

y

1

0

Figure 5

Now Try Exercise 61	 ■

Example 6  ■  Shifting Graphs of Logarithmic Functions
Sketch the graph of each function. State the domain, range, and asymptote.

(a)	 g1x 2  2  log5 x      (b)  h1x 2  log101x  3 2
Solution

(a)	 �The graph of g is obtained from the graph of f 1x 2  log5 x (Figure 4) by shifting 
upward 2 units, as shown in Figure 6. From the graph we see that the domain of g 
is 10, ` 2 , the range is the set R of all real numbers, and the line x  0 is a verti-
cal asymptote.

3

0 x

y

1

1

2

g(x)=2+logfi x

f(x)=logfi x

Figure 6

(b)	 �The graph of h is obtained from the graph of f 1x 2  log10 x (Figure 4) by shift-
ing to the right 3 units, as shown in Figure 7. From the graph we see that the 
domain of h is 13, ` 2 , the range is the set R of all real numbers, and the line 
x  3 is a vertical asymptote.

f(x)=log⁄‚ x

h(x)=log⁄‚(x-3)

10 x

y

4

1
Asymptote
x=3

Figure 7

Now Try Exercises 63 and 67	 ■

Law Enforcement
Mathematics aids law enforcement in 
numerous and surprising ways, from the 
reconstruction of bullet trajectories to 
determining the time of death to calcu-
lating the probability that a DNA sample 
is from a particular person. One interest-
ing use is in the search for missing per-
sons. A person who has been missing for 
several years might look quite different 
from his or her most recent available 
photograph. This is particularly true if the 
missing person is a child. Have you ever 
wondered what you will look like 5, 10, or 
15 years from now?

Researchers have found that different 
parts of the body grow at different rates. 
For example, you have no doubt noticed 
that a baby’s head is much larger relative 
to its body than an adult’s. As another 
example, the ratio of arm length to 
height is 1

3  in a child but about 2
5  in an 

adult. By collecting data and analyzing 
the graphs, researchers are able to deter-
mine the functions that model growth. 
As in all growth phenomena, exponential 
and logarithmic functions play a crucial 
role. For instance, the formula that relates 
arm length l to height h is l  aekh where 
a and k are constants. By studying vari-
ous physical characteristics of a person, 
mathematical biologists model each 
characteristic by a function that describes 
how it changes over time. Models of 
facial characteristics can be programmed 
into a computer to give a picture of how 
a person’s appearance changes over time. 
These pictures aid law enforcement 
agencies in locating missing persons.

Mathematics in the Modern World

Bettmann/CORBIS Hulton-Deutsch Collection/
Historical/Corbis
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348  CHAPTER 4  ■  Exponential and Logarithmic Functions

■ C ommon Logarithms
We now study logarithms with base 10.

Common Logarithm

The logarithm with base 10 is called the common logarithm and is denoted by 
omitting the base:

log x  log10 x

From the definition of logarithms we can easily find that

log 10  1  and  log 100  2

But how do we find log 50? We need to find the exponent y such that 10 y  50. Clearly, 
1 is too small and 2 is too large. So

1  log 50  2

To get a better approximation, we can experiment to find a power of 10 closer to 50. 
Fortunately, scientific calculators are equipped with a log  key that directly gives val-
ues of common logarithms.

Example 7  ■  Evaluating Common Logarithms
Use a calculator to find appropriate values of f 1x 2  log x, and use the values to 
sketch the graph.

SOLUTION    We make a table of values, using a calculator to evaluate the function at 
those values of x that are not powers of 10. We plot those points and connect them by 
a smooth curve as in Figure 8.

x log x

  0.01 2
  0.1 1
  0.5 0.301
  1 0
  4 0.602
  5 0.699
10 1

Figure 8

f(x)=log x

0 x

y

2

2

4 6 8 10 12
_1

1

Now Try Exercise 51	 ■

Scientists model human response to stimuli (such as sound, light, or pressure) using 
logarithmic functions. For example, the intensity of a sound must be increased many-
fold before we “feel” that the loudness has simply doubled. The psychologist Gustav 
Fechner formulated the law as

S  k log a I

I0
b

where S is the subjective intensity of the stimulus, I is the physical intensity of the 
stimulus, I0 stands for the threshold physical intensity, and k is a constant that is differ-
ent for each sensory stimulus.
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John NapieR (1550–1617) was a Scot-
tish landowner for whom mathematics 
was a hobby. We know him today 
because of his key invention: logarithms, 
which he published in 1614 under the 
title A Description of the Marvelous Rule of 
Logarithms. In Napier’s time, logarithms 
were used exclusively for simplifying 
complicated calculations. For example, to 
multiply two large numbers, we would 
write them as powers of 10. The expo-
nents are simply the logarithms of the 
numbers. For instance,

4532  57783

            < 103.65629  104.76180

             108.41809

            < 261,872,564

The idea is that multiplying powers of 
10 is easy (we simply add their exponents). 
Napier produced extensive tables giving 
the logarithms (or exponents) of numbers. 
Since the advent of calculators and com-
puters, logarithms are no longer used for 
this purpose. The logarithmic functions, 
however, have found many applications, 
some of which are described in this 
chapter.

Napier wrote on many topics. One of 
his most colorful works is a book entitled  
A Plaine Discovery of the Whole Revelation of 
Saint John, in which he predicted that the 
world would end in the year 1700.

Human response to sound and light  
intensity is logarithmic.
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SECTION 4.3  ■  Logarithmic Functions  349

Example 8  ■  Common Logarithms and Sound
The perception of the loudness B (in decibels, dB) of a sound with physical intensity I 
(in W/m2) is given by

B  10  log a I

I0
b

where I0 is the physical intensity of a barely audible sound. Find the decibel level 
(loudness) of a sound whose physical intensity I is 100 times that of I0.

SOLUTION    We find the decibel level B by using the fact that I  100I0.

 B  10  log a I

I0
b         Definition of B

  10  log a 100I0

I0
b         I  100I0

  10  log 100         Cancel I0

  10 # 2  20         Definition of log

The loudness of the sound is 20 dB.

Now Try Exercise 97	 ■

■  Natural Logarithms
Of all possible bases a for logarithms, it turns out that the most convenient choice for 
the purposes of calculus is the number e, which we defined in Section 4.2.

Natural Logarithm

The logarithm with base e is called the natural logarithm and is denoted by ln:

ln x  loge x

The natural logarithmic function y  ln x is the inverse function of the natural expo-
nential function y  ex. Both functions are graphed in Figure 9. By the definition of 
inverse functions we have

ln x  y 3 ey  x

If we substitute a  e and write “ln” for “loge” in the properties of logarithms men-
tioned earlier, we obtain the following properties of natural logarithms.

Properties of Natural Logarithms

Property	 Reason

1.	 ln 1  0	 We must raise e to the power 0 to get 1.

2.	 ln e  1	 We must raise e to the power 1 to get e.

3.	 ln ex  x	 We must raise e to the power x to get ex.

4.	 eln x  x	 ln x is the power to which e must be raised to get x.

We study the decibel scale in more  
detail in Section 4.7.

The notation ln is an abbreviation for 
the Latin name logarithmus naturalis.

Figure 9  Graph of the natural  
logarithmic function

y=x

y=e˛

y=ln x

x

y

1

1

71759_ch04_329-400.indd   349 9/16/14   5:23 PM

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



350  CHAPTER 4  ■  Exponential and Logarithmic Functions

Calculators are equipped with an ln  key that directly gives the values of natural 
logarithms.

Example 9  ■  Evaluating the Natural Logarithm Function
(a)	 ln e8  8	 Definition of natural logarithm

(b)	 ln a 1

e 2 b  ln e2  2	 Definition of natural logarithm

(c)	 ln 5 ^ 1.609	 Use ln  key on calculator

Now Try Exercise 47	 ■

Example 10  ■  Finding the Domain of a Logarithmic Function
Find the domain of the function f 1x 2  ln14  x2 2 .
SOLUTION    As with any logarithmic function, ln x is defined when x  0. Thus the 
domain of f is

 5x 0  4  x2  06  5x 0  x2  46  5x @ 0 x 0  26
  5x 0  2  x  26  12, 2 2

Now Try Exercise 73	 ■

Example 11  ■  Drawing the Graph of a Logarithmic Function
Draw the graph of the function y  x ln14  x2 2 , and use it to find the asymptotes 
and local maximum and minimum values.

SOLUTION    As in Example 10 the domain of this function is the interval 12, 2 2 , so 
we choose the viewing rectangle 33, 34 by 33, 34. The graph is shown in Figure 10, 
and from it we see that the lines x  2 and x  2 are vertical asymptotes.

3

_3

_3 3

Figure 10 

y  x ln14  x2 2

Discovery Project

Orders of Magnitude

In this project we explore how to compare the sizes of real-world objects using 
logarithms. For example, how much bigger is an elephant than a flea? How much 
smaller is a man than a giant redwood? It is difficult to compare objects of such 
enormously varying sizes. In this project we learn how logarithms can be used to 
define the concept of “order of magnitude,” which provides a simple and mean-
ingful way of comparison. You can find the project at www.stewartmath.com.
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SECTION 4.3  ■  Logarithmic Functions  351

concepts
	 1.	 log x is the exponent to which the base 10 must be raised to get

		     . So we can complete the following table for log x.

x 103 102 101 100 101 102 103 101/2

log x

	 2.	 The function f 1x 2  log9 x is the logarithm function  

with base    . So f 19 2     ,  

f 11 2     , f A19 B     , f 181 2     , 

and f 13 2     .

	 3.	 (a)	 53  125, so log   

	 	 (b)	 log5 25  2, so   

	 4.	 Match the logarithmic function with its graph.

(a)	 f 1x 2  log2 
 x	 (b)	 f 1x 2  log21x 2       

(c)	 f 1x 2  log2 x	 (d)	 f 1x 2  log21x 2

I y

x0 2

1

II y

x0 2

1

IV y

x0 2

1

III y

x0 2

1

	 5.	 The natural logarithmic function f 1x 2  ln x has the  

  asymptote x     . 

	 6.	 The logarithmic function f 1x 2  ln1x  1 2  has the  

  asymptote x     . 

skills
7–8  ■  Logarithmic and Exponential Forms    Complete the table 
by finding the appropriate logarithmic or exponential form of the 
equation, as in Example 1.

	 7.	
Logarithmic 

form
Exponential  

form

log8 8  1

log8 64  2

82/3  4

83  512

log8A18 B  1

82  1
64

	 8.	
Logarithmic 

form
Exponential  

form

43  64

log 4 2  1
2

43/2 8

log4A 1
16 B   2

log4A12 B  1
2

45/2  1
32

9–16  ■  Exponential Form    Express the equation in exponential 
form.

	 9.	 (a)  log3 81  4	 (b)	 log3 1  0

	10.	 (a)  log5A15 B  1	 (b)	 log4 64  3

	11.	 (a)	 log8 2  1
3	 (b)	 log10 0.01  2

	12.	 (a)	 log5A 1
125 B  3	 (b)	 log8 4  2

3

	13.	 (a)	 log3 5  x	 (b)	 log713y 2  2

14.	 (a)	 log6 z  1	 (b)	 log10 3  2t

15.	 (a)	 ln 5  3y	 (b)	 ln1 t  1 2  1

	16.	 (a)	 ln1x  1 2  2	 (b)	 ln1x  1 2  4

17–24  ■  Logarithmic Form    Express the equation in logarithmic 
form.

	17.	 (a)	 104  10,000	 (b)	 52  1
25

	18.	 (a)	 62  36	 (b)	 101  1
10

4.3  Exercises

The function has a local maximum point to the right of x  1 and a local minimum 
point to the left of x  1. By zooming in and tracing along the graph with the cur-
sor, we find that the local maximum value is approximately 1.13 and this occurs when  
x ^ 1.15. Similarly (or by noticing that the function is odd), we find that the local 
minimum value is about 1.13, and it occurs when x ^ 1.15.

Now Try Exercise 79	 ■
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352  CHAPTER 4  ■  Exponential and Logarithmic Functions

	19.	 (a)	 81  1
8	 (b)	 23  1

8

	20.	 (a)	 43/2  0.125	 (b)	 73  343

21.	 (a)	 4x  70	 (b)	 35  „

22.	 (a)	 32x  10	 (b)	 104x  0.1

	23.	 (a)	 ex  2	 (b)	 e3  y

	24.	 (a)	 ex1  0.5	 (b)	 e0.5x  t

25–34  ■  Evaluating Logarithms    Evaluate the expression.

	25.	 (a)  log2 2	 (b)	 log5 1	 (c)	 log6 6
5

	26.	 (a)	 log3 3
7	 (b)	 log4 64	 (c)	 log5 125

	27.	 (a)	 log6 36	 (b)	 log9 81	 (c)	 log7 7
10

	28.	 (a)	 log2 32	 (b)	 log8 8
17	 (c)	 log6 1

	29.	 (a)	 log3A 1
 27 
B 	 (b)	 log10 !10	 (c)	 log5 0.2

	30.	 (a)	 log5 125	 (b)	 log49 7	 (c)	 log9 !3

	31.	 (a)	 3log3 5	 (b)	 5log5 27	 (c)	 eln 10

32.	 (a)	 eln !3	 (b)	 eln11/p2	 (c)	 10log 13

	33.	 (a)	 log8 0.25	 (b)	 ln e4	 (c)	 ln11/e 2
	34.	 (a)	 log4 !2	 (b)	 log4A12 B 	 (c)	 log4 8

35–44  ■  Logarithmic Equations    Use the definition of the loga-
rithmic function to find x.

	35.	 (a)	 log4 x  3	 (b)	 log10 0.01  x

	36.	 (a)	 log3 x  2	 (b)	 log5 125  x

37.	 (a)	 ln x  3	 (b)	 ln e2  x

38.	 (a)	 ln x  1	 (b)	 ln11/e 2  x

	39.	 (a)	 log7A 1
49 B  x	 (b)	 log2 x  5

	40.	 (a)	 log4 2  x	 (b)	 log4 x  2

	41.	 (a)	 log2A12 B  x	 (b)	 log10 x  3

42.	 (a)	 logx 1000  3	 (b)	 logx 25  2

	43.	 (a)	 logx 16  4	 (b)	 logx 8  3
2

	44.	 (a)	 logx 6  1
2	 (b)	 logx 3  1

3

45–48  ■  Evaluating Logarithms    Use a calculator to evaluate the 
expression, correct to four decimal places.

	45.	 (a)	 log 2	 (b)	 log 35.2	 (c)	 logA23 B
	46.	 (a)	 log 50	 (b)	 log !2	 (c)	 log13 !2 2
	47.	 (a)	 ln 5	 (b)	 ln 25.3	 (c)	 ln11  !3 2
	48.	 (a)	 ln 27	 (b)	 ln 7.39	 (c)	 ln 54.6

49–52  ■  Graphing Logarithmic Functions    Sketch the graph of 
the function by plotting points.

	49.	 f 1x 2  log3 x	 50.	 g1x 2  log4 x

	51.	 f 1x 2  2 log x	 52.	 g1x 2  1  log x

53–56  ■  Finding Logarithmic Functions    Find the function of 
the form y  loga x whose graph is given.

	53.	

x

y

0 1 5

(5, 1)1

	 54.	

0 x

y

1

!   , _1@1
2

_1

1

55.	

0 x

y

1 3

1 !3,   @1
2

	 56.	

0 x

y

1 963

(9, 2)

1

57–58  ■  Graphing Logarithmic Functions    Match the logarith-
mic function with one of the graphs labeled I or II.

	57.	 f 1x 2  2  ln x	 58.	 f 1x 2  ln1x  2 2

y

(1, 2)

x0 1

2

I

	

II y

(3, 0)

x1 30

x=2

	59.	 Graphing    Draw the graph of y  4x, then use it to draw the 
graph of y  log4 x.

	60.	 Graphing    Draw the graph of y  3x, then use it to draw the 
graph of y  log3 x.

61–72  ■  Graphing Logarithmic Functions    Graph the function, 
not by plotting points, but by starting from the graphs in Figures 
4 and 9. State the domain, range, and asymptote.

61.	 g1x 2  log51x 2 	 62.	 f 1x 2  log10 x

63.	 f 1x 2  log21x  4 2 	 64.	 g1x 2  ln1x  2 2
65.	 h1x 2  ln1x  5 2 	 66.	 g1x 2  log61x  3 2
	67.	 y  2  log3 x	 68.	 y  1  log10 x

69.	 y  log31x  1 2  2	 70.	 y  1  ln1x 2
	71.	 y  0  ln x 0 	 72.	 y  ln 0  x 0

73–78  ■  Domain    Find the domain of the function.

	73.	 f 1x 2  log101x  3 2 	 74.	 f 1x 2  log518  2x 2
75.	 g1x 2  log31x2  1 2 	 76.	 g1x 2  ln1x  x2 2
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SECTION 4.3  ■  Logarithmic Functions  353

	77.	 h1x 2  ln x  ln12  x 2
	78.	 h1x 2  !x  2  log5110  x 2

79–84  ■  Graphing Logarithmic Functions    Draw the graph of 
the function in a suitable viewing rectangle, and use it to find the 
domain, the asymptotes, and the local maximum and minimum 
values.

	79.	 y  log1011  x2 2 	 80.	 y  ln1x2  x 2
	81.	 y  x  ln x	 82.	 y  x1 ln x 2 2

	83.	 y 
ln x

x
	 84.	 y  x log101x  10 2

skills plus
85–88  ■  Domain of a Composition    Find the functions f + g and 
g + f  and their domains.

85.	 f 1x 2  2x,    g1x 2  x  1	

86.	 f 1x 2  3x,  g1x 2  x2  1

87.	 f 1x 2  log2 x, g1x 2  x  2	

88.	 f 1x 2  log x, g1x 2  x2

	89.	 Rates of Growth    Compare the rates of growth of the func-
tions f 1x 2  ln x and g1x 2  !x by drawing their graphs on 
a common screen using the viewing rectangle 31, 304 by 
31, 64.

	90.	 Rates of Growth  
(a)  By drawing the graphs of the functions

f 1x 2  1  ln11  x 2  and  g1x 2  !x

		� in a suitable viewing rectangle, show that even when a 
logarithmic function starts out higher than a root func-
tion, it is ultimately overtaken by the root function.

(b)	� Find, rounded to two decimal places, the solutions of the 
equation !x  1  ln11  x 2 .

91–92  ■  Family of Functions    A family of functions is given.  
(a) Draw graphs of the family for c  1, 2, 3, and 4. (b) How are 
the graphs in part (a) related?

	91.	 f 1x 2  log1cx 2 	 92.	 f 1x 2  c log x

93–94  ■  Inverse Functions    A function f 1x 2  is given. (a) Find 
the domain of the function f. (b) Find the inverse function of f.

	93.	 f 1x 2  log21 log10  x 2 	 94.	 f 1x 2  ln1 ln1 ln x 22
	95.	 Inverse Functions  

(a)	 Find the inverse of the function f 1x 2 
2x

1  2x .

(b)	 What is the domain of the inverse function?

applications
	96.	 Absorption of Light    A spectrophotometer measures the con-

centration of a sample dissolved in water by shining a light 
through it and recording the amount of light that emerges. In 

		  other words, if we know the amount of light that is absorbed, 
we can calculate the concentration of the sample. For a certain 
substance the concentration (in moles per liter, mol/L) is 
found by using the formula

C  2500 lna I

I0
b

		  where I0 is the intensity of the incident light and I is the  
intensity of light that emerges. Find the concentration of the 
substance if the intensity I is 70% of I0.

I0 I

	 97.	 Carbon Dating    The age of an ancient artifact can be deter-
mined by the amount of radioactive carbon-14 remaining in it. 
If D0 is the original amount of carbon-14 and D is the amount 
remaining, then the artifact’s age A (in years) is given by

A  8267 lna D

D0
b

		  Find the age of an object if the amount D of carbon-14 that  
remains in the object is 73% of the original amount D0.

	 98.	 Bacteria Colony    A certain strain of bacteria divides every  
3 hours. If a colony is started with 50 bacteria, then the time 
t (in hours) required for the colony to grow to N bacteria is 
given by

t  3 

log1N/50 2
log 2

		  Find the time required for the colony to grow to a million 
bacteria.

	 99.	 Investment    The time required to double the amount of an 
investment at an interest rate r compounded continuously is 
given by

t 
ln 2

r

		  Find the time required to double an investment at 6%, 7%,  
and 8%.

	100.	 Charging a Battery    The rate at which a battery charges is 
slower the closer the battery is to its maximum charge C0. 
The time (in hours) required to charge a fully discharged 
battery to a charge C is given by

t  k ln a1 
C

C0
b

		  where k is a positive constant that depends on the battery.  
For a certain battery, k  0.25. If this battery is fully dis-
charged, how long will it take to charge to 90% of its maxi-
mum charge C0?
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354  CHAPTER 4  ■  Exponential and Logarithmic Functions

	101. � Difficulty of a Task    The difficulty in “acquiring a target” 
(such as using your mouse to click on an icon on your  
computer screen) depends on the distance to the target and 
the size of the target. According to Fitts’s Law, the index of 
difficulty (ID) is given by

ID 
log12A/W 2

log 2

		  where W is the width of the target and A is the distance to  
the center of the target. Compare the difficulty of clicking 
on an icon that is 5 mm wide to clicking on one that is  
10 mm wide. In each case, assume that the mouse is  
100 mm from the icon.

DiSCUSS  ■ DI SCOVER  ■  PROVE  ■  WRITE
	102.	� DISCUSS:  The Height of the Graph of a Logarithmic Function 

Suppose that the graph of y  2x is drawn on a coordinate 
plane where the unit of measurement is an inch.

(a)	 �Show that at a distance 2 ft to the right of the origin the 
height of the graph is about 265 mi.

(b)	 �If the graph of y  log2 x is drawn on the same set of 
axes, how far to the right of the origin do we have to go 
before the height of the curve reaches 2 ft?

	103.	� DISCUSS:  The Googolplex    A googol is 10100, and a  
googolplex is 10googol. Find

log1 log1googol 22         and        log1 log1 log1googolplex 222
	104.	� DISCUSS:  Comparing Logarithms    Which is larger, log4 17 

or log5 24? Explain your reasoning.

	105.	� DISCUSS  ■ DI SCOVER:  The Number of Digits in an Integer   
Compare log 1000 to the number of digits in 1000. Do the 
same for 10,000. How many digits does any number 
between 1000 and 10,000 have? Between what two values 
must the common logarithm of such a number lie? Use your 
observations to explain why the number of digits in any 
positive integer x is “log x‘  1. (The symbol “n‘ is the 
greatest integer function defined in Section 2.2.) How many 
digits does the number 2100 have?

4.4  Laws of Logarithms
■  Laws of Logarithms  ■  Expanding and Combining Logarithmic Expressions   
■ C hange of Base Formula

In this section we study properties of logarithms. These properties give logarithmic 
functions a wide range of applications, as we will see in Sections 4.6 and 4.7.

■  Laws of Logarithms
Since logarithms are exponents, the Laws of Exponents give rise to the Laws of 
Logarithms.

Laws of Logarithms

Let a be a positive number, with a 2 1. Let A, B, and C be any real numbers with A  0 and B  0.

Law	 Description

1.  loga1AB 2  loga A  loga B	� The logarithm of a product of numbers is the sum of the logarithms of the 
numbers.

2.	 loga a A

B
b  loga A  loga B	� The logarithm of a quotient of numbers is the difference of the logarithms of the 

numbers.

3.	 loga1AC 2  C loga A	� The logarithm of a power of a number is the exponent times the logarithm of the 
number.
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SECTION 4.4  ■  Laws of Logarithms  355

Proof    We make use of the property loga a
x  x from Section 4.3.

Law 1  �  Let loga A  u and loga B  √. When written in exponential form, these 
equations become

au  A  and  a√  B

Thus	  loga1AB 2  loga1aua√ 2  loga1au√ 2
  u  √  loga A  loga B

Law 2    Using Law 1, we have

loga A  loga c a A

B
bB d  loga a A

B
b  loga B

so	 loga a A

B
b  loga A  loga B

Law 3    Let loga A  u. Then au  A, so

	 loga1AC 2  loga1au 2C  loga1auC 2  uC  C loga A� ■

Example 1  ■  �Using the Laws of Logarithms to Evaluate Expressions
Evaluate each expression.
(a)	 log4 2  log4 32

(b)	 log2 80  log2 5

(c)	  
1
3 log 8

SOLUTION

(a)	  log4 2  log4 32  log412 # 32 2 	 Law 1

		    log4 64  3	 Because 64  43

(b)	  log2 80  log2 5  log2A  80 

5 B 	 Law 2

		    log2 16  4	 Because 16  24

(c)	   
1
3 log 8  log 81/3	 Law 3

		    logA12B 	 Property of negative exponents

	 	  < 0.301 	 Calculator

Now Try Exercises 9, 11, and 13	 ■

■  Expanding and Combining Logarithmic Expressions
The Laws of Logarithms allow us to write the logarithm of a product or a quotient as 
the sum or difference of logarithms. This process, called expanding a logarithmic ex-
pression, is illustrated in the next example.

Example 2  ■  Expanding Logarithmic Expressions
Use the Laws of Logarithms to expand each expression.

(a)	 log216x 2             (b)  log51x3y6 2             (c)  ln a ab

!3 c
b

SOLUTION

(a)	 log216x 2  log2 6  log2 x	 Law 1

(b)	  log51x3y6 2  log5 x
3  log5 y6 	 Law 1

	 	   3 log5 x  6 log5 y	 Law 3
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356  CHAPTER 4  ■  Exponential and Logarithmic Functions

(c)	  ln a ab

!3 c
b  ln1ab 2  ln !3 c 	 Law 2

		    ln a  ln b  ln c1/3	 Law 1

	 	   ln a  ln b  1
3 ln c 	 Law 3

Now Try Exercises 23, 31, and 37	 ■

The Laws of Logarithms also allow us to reverse the process of expanding that was 
done in Example 2. That is, we can write sums and differences of logarithms as a single 
logarithm. This process, called combining logarithmic expressions, is illustrated in the 
next example.

Example 3  ■  Combining Logarithmic Expressions
Use the Laws of Logarithms to combine each expression into a single logarithm.

(a)	 3 log x  1
2 log1x  1 2

(b)	 3 ln s  1
2 ln t  4 ln1 t2  1 2

SOLUTION

(a)	  3 log x  1
2 log1x  1 2  log x3  log1x  1 2 1/2        Law 3

	 	   log1x31x  1 2 1/2 2         Law 1

(b)	  3 ln s  1
2 ln t  4 ln1 t 

2  1 2  ln s3  ln t1/2  ln1 t 
2  1 2 4        Law 3

	 	   ln1s3t1/2 2  ln1 t 
2  1 2 4         Law 1

	 	   ln a s3!t

1 t 
2  1 2 4 b         Law 2

Now Try Exercises 51 and 53	 ■

Warning    Although the Laws of Logarithms tell us how to compute the logarithm of a 
product or a quotient, there is no corresponding rule for the logarithm of a sum or a 
difference. For instance,

 loga1x  y 2  loga x  loga y

In fact, we know that the right side is equal to loga1xy 2 . Also, don’t improperly simplify 
quotients or powers of logarithms. For instance,

 
log 6

log 2
 log a 6

2
b  and  1 log2 x 2 3  3 log2 x

Logarithmic functions are used to model a variety of situations involving human 
behavior. One such behavior is how quickly we forget things we have learned. For ex-
ample, if you learn algebra at a certain performance level (say, 90% on a test) and then 
don’t use algebra for a while, how much will you retain after a week, a month, or a 
year? Hermann Ebbinghaus (1850–1909) studied this phenomenon and formulated the 
law described in the next example.

Example 4  ■  The Law of Forgetting
If a task is learned at a performance level P0, then after a time interval t the perfor-
mance level P satisfies

log P  log P0  c log1 t  1 2
where c is a constant that depends on the type of task and t is measured in months.

(a)	 Solve for P.

(b)	 �If your score on a history test is 90, what score would you expect to get on a sim-
ilar test after two months? After a year? (Assume that c  0.2.)

Forgetting what we’ve learned depends 
on how long ago we learned it.
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SECTION 4.4  ■  Laws of Logarithms  357

SOLUTION

(a)	 We first combine the right-hand side.

 log P  log P0  c log1 t  1 2         Given equation

 log P  log P0  log1 t  1 2 c         Law 3

 log P  log 
P0

1 t  1 2 c         Law 2

 P 
P0

1 t  1 2 c         Because log is one-to-one

(b)	 Here P0  90, c  0.2, and t is measured in months.

 In 2 months:   t  2   and   P 
90

12  1 2 0.2 < 72

 In 1 year:   t  12   and   P 
90

112  1 2 0.2 < 54

	 �	 Your expected scores after 2 months and after 1 year are 72 and 54, 
respectively.

Now Try Exercise 73	 ■

■ C hange of Base Formula
For some purposes we find it useful to change from logarithms in one base to loga-
rithms in another base. Suppose we are given loga x and want to find logb x. Let

y  logb x

We write this in exponential form and take the logarithm, with base a, of each side.

 by  x         Exponential form

 loga1by 2  loga x         Take loga of each side

 y loga b  loga x         Law 3

 y 
loga x

loga b
        Divide by loga b

This proves the following formula.

Change of Base Formula

logb x 
loga x

loga b

In particular, if we put x  a, then loga a  1, and this formula becomes

logb a 
1

loga b

We can now evaluate a logarithm to any base by using the Change of Base Formula 
to express the logarithm in terms of common logarithms or natural logarithms and then 
using a calculator.

We may write the Change of Base 
Formula as

logb x  a 1

loga b
b loga x

So logb x is just a constant multiple  

of loga x; the constant is 
1

loga b
.
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358  CHAPTER 4  ■  Exponential and Logarithmic Functions

Example 5  ■  �Evaluating Logarithms with the Change  
of Base Formula

Use the Change of Base Formula and common or natural logarithms to evaluate each 
logarithm, rounded to five decimal places.

(a)	 log8 5                (b)  log9 20

SOLUTION

(a)	 We use the Change of Base Formula with b  8 and a  10:

log8 5 
log10 5

log10 8
< 0.77398

(b)	 We use the Change of Base Formula with b  9 and a  e:

log9 20 
ln 20

ln 9
< 1.36342

Now Try Exercises 59 and 61	 ■

Example 6  ■  �Using the Change of Base Formula to Graph 	 
a Logarithmic Function

Use a graphing calculator to graph f 1x 2  log6 x.

SOLUTION    Calculators don’t have a key for log6, so we use the Change of Base For-
mula to write

f 1x 2  log6 x 
ln x

ln 6

Since calculators do have an ln  key, we can enter this new form of the function and  
graph it. The graph is shown in Figure 1.

Now Try Exercise 67	 ■

concepts
	 1.	 The logarithm of a product of two numbers is the same as

		  the   of the logarithms of these numbers. So 

		  log5125 # 125 2        .

	 2.	 The logarithm of a quotient of two numbers is the same  

as the   of the logarithms of these numbers. So 

log5 
A 25
125 B         .

	 3.	 The logarithm of a number raised to a power is the same as  

the   times the logarithm of the number. So  

log512510 2    #     .

	 4.	 We can expand log a x2 y

z
b  to get    .

	 5.	 �We can combine 2 log x  log y  log z to get  .

	 6.	 (a)	� Most calculators can find logarithms with base   

and base    . To find logarithms with different 

bases, we use the   Formula. To find 
log712, we write

log7 12 
log     

log     
<  

		  (b)	� Do we get the same answer if we perform the calculation 
in part (a) using ln in place of log?

7–8  ■  True or False?

	 7.	 (a)	 log1A  B 2  is the same as log A  log B.

(b)	 log AB is the same as log A  log B.

	 8.	 (a)	� log 
A

B
 is the same as log A  log B.

(b)	
log A

log B
 is the same as log A  log B.

4.4  Exercises

2

_1

0 36

FIGURE 1 

f 1x 2  log6 x 
ln x

ln 6
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skills
9–22  ■  Evaluating Logarithms    Use the Laws of Logarithms to 
evaluate the expression.

	 9.	 log 50  log 200	 10.	 log6 9  log6 24

	11.	 log2 60  log2 15	 12.	 log3 135  log3 45

	13.	 1
4 log3 81	 14.	  

1
3 log3 27

	15.	 log5 !5	 16.	 log5 
1

!125

	17.	 log2 6  log215  log2 20

	18.	 log3 100  log3 18  log3 50

	19.	 log4 16100	 20.	 log2 8
33

	21.	 log1 log 1010,000 2 	 22.	 ln1 ln ee200 2

23–48  ■  Expanding Logarithmic Expressions    Use the Laws of 
Logarithms to expand the expression.

	23.	 log3 8x	 24.	 log6 7r

	25.	 log3 2xy	 26.	 log5 4st

27.	 ln a3	 28.	 log "t5

29.	 log21xy 2 10
	 30.	 ln !ab

	31.	 log21AB2 2 	 32.	 log3Ax !y B

	33.	 log3
2x

y
	 34.	 ln 

r

3s

35.	 log5 a 3x2

y3 b 	 36.	 log2 a s5

7t2 b

37.	 log3 

"3x5

y
	 38.	 log 

y3

!2x

	39.	 log a x3y4

z6 b 	
40.	 loga a x2

yz3 b

41.	 ln "x4  2	 42.	 log "3 x2  4

	43.	 ln a x Ä
y

z
b 	 44.	 ln 

3x2

1x  1 2 10

	45.	 log "4 x2  y2	 46.	 log a x

!3 1  x
b

	47.	 log Å
x2  4

1x2  1 2 1x3  7 2 2 	 48.	 log #x"y!z

49–58  ■  Combining Logarithmic Expressions    Use the Laws of 
Logarithms to combine the expression.

	49.	 log4 6  2 log4 7	

50.	 1
2 log2 5  2 log2 7

	51.	 2 log x  3 log1x  1 2
52.	 3 ln 2  2 ln x  1

2 ln1x  4 2
	53.	 4  log x  1

3  log1x2  1 2  2  log1x  1 2
	54.	 log51x2  1 2  log51x  1 2
	55.	 ln1a  b 2  ln1a  b 2  2  ln c

	56.	 21 log5 x  2  log5 y  3 log5 z 2

	57.	 1
3 log1x  2 2 3  1

2 3 log x4  log1x2  x  6 2 2 4
	58.	 loga b  c loga d  r loga s

59–66  ■  Change of Base Formula    Use the Change of  
Base Formula and a calculator to evaluate the logarithm, 
rounded to six decimal places. Use either natural or common 
logarithms.

	59.	 log2 5	 60.	 log5 2

	61.	 log3 16	 62.	 log6 92

	63.	 log7 2.61	 64.	 log6 532

	65.	 log4 125	 66.	 log12 2.5

	67.	 Change of Base Formula    Use the Change of Base Formula 
to show that

log3 x 
ln x

ln 3

		  Then use this fact to draw the graph of the function 
f 1x 2  log3 x.

SKILLS Plus
	68.	 Families of Functions    Draw graphs of the family of func-

tions y  loga x for a  2, e, 5, and 10 on the same screen, 
using the viewing rectangle 30, 54 by 33, 34. How are these 
graphs related?

	69.	 Change of Base Formula    Use the Change of Base Formula 
to show that

log e 
1

ln 10

	70.	 Change of Base Formula    Simplify: 1 log2 5 2 1 log5 7 2
	71.	 A Logarithmic Identity    Show that 

ln1x  "x2  1 2  ln1x  "x2  1 2

applications
	72.	 Forgetting    Use the Law of Forgetting (Example 4) to esti-

mate a student’s score on a biology test two years after he got 
a score of 80 on a test covering the same material. Assume 
that c  0.3 and t is measured in months.

	73.	 Wealth Distribution    Vilfredo Pareto (1848–1923) observed 
that most of the wealth of a country is owned by a few mem-
bers of the population. Pareto’s Principle is

log P  log c  k log W

		  where W is the wealth level (how much money a person has) 
and P is the number of people in the population having that 
much money.

(a)	 Solve the equation for P.

(b)	� Assume that k  2.1 and c  8000, and that W is mea-
sured in millions of dollars. Use part (a) to find the num-
ber of people who have $2 million or more. How many 
people have $10 million or more?
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360  CHAPTER 4  ■  Exponential and Logarithmic Functions

	74.	 Biodiversity    Some biologists model the number of species S 
in a fixed area A (such as an island) by the species-area 
relationship

log S  log c  k log A

		  where c and k are positive constants that depend on the type 
of species and habitat.

(a)	 Solve the equation for S.

(b)	� Use part (a) to show that if k  3, then doubling the area 
increases the number of species eightfold.

	75.	 Magnitude of Stars    The magnitude M of a star is a measure 
of how bright a star appears to the human eye. It is defined 
by 

M  2.5 loga B

B0
b

		  where B is the actual brightness of the star and B0 is a 
constant.

(a)	 Expand the right-hand side of the equation.

(b)	� Use part (a) to show that the brighter a star, the less its 
magnitude.

(c)	� Betelgeuse is about 100 times brighter than Albiero. Use 
part (a) to show that Betelgeuse is 5 magnitudes less 
bright than Albiero.

DiSCUSS  ■ DI SCOVER  ■  PROVE  ■  WRITE
	76.	 DISCUSS:  True or False?    Discuss each equation, and determine 

whether it is true for all possible values of the variables. (Ignore 
values of the variables for which any term is undefined.)

(a)	 log a x

y
b 

log x

log y

(b)	 log21x  y 2  log2 x  log2 y

(c)	 log5 a a

b2 b  log5 a  2 log5 b

(d)	 log 2z  z log 2

(e)	 1 log P 2 1 log Q 2  log P  log Q

(f )	
log a

log b
 log a  log b

(g)	 1 log2 7 2 x  x log2 7

(h)	 loga a
a  a

(i)	 log1x  y 2 
log x

log y

( j)	 ln a 1

A
b  ln A

	77.	 DISCUSS:  Find the Error    What is wrong with the following 
argument?

 log 0.1  2 log 0.1

  log10.1 2 2
  log 0.01

 log 0.1  log 0.01

 0.1  0.01

	78.	 PROVE:  Shifting, Shrinking, and Stretching Graphs of  
Functions    Let f 1x 2  x2. Show that f 12x 2  4f 1x 2 , and 
explain how this shows that shrinking the graph of f horizon-
tally has the same effect as stretching it vertically. Then use 
the identities e2x  e2ex and ln12x 2  ln 2  ln x to show 
that for g1x 2  ex a horizontal shift is the same as a vertical 
stretch and for h1x 2  ln x a horizontal shrinking is the same 
as a vertical shift.

4.5  Exponential and Logarithmic Equations
■  Exponential Equations  ■  Logarithmic Equations  ■ C ompound Interest

In this section we solve equations that involve exponential or logarithmic functions. The 
techniques that we develop here will be used in the next section for solving applied 
problems.

■  Exponential Equations
An exponential equation is one in which the variable occurs in the exponent. Some 
exponential equations can be solved by using the fact that exponential functions are 
one-to-one. This means that 

ax  ay 1 x  y

We use this property in the next example. 
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Example 1  ■  Exponential Equations
Solve the exponential equation.

(a)	 5x  125            (b)  52x  5x1

SOLUTION

(a)	 �We first express 125 as a power of 5 and then use the fact that the exponential 
function f1x 2  5x is one-to-one.

 5x  125        Given equation

 5x  53         Because 125  53

 x  3         One-to-one property

	 	 The solution is x  3.

(b)	 �We first use the fact that the function f1x 2  5x is one-to-one.

 52x  5x1         Given equation

 2x  x  1        One-to-one property

 x  1         Solve for x

	 	 The solution is x  1.

Now Try Exercises 3 and 7	 ■

The equations in Example 1 were solved by comparing exponents. This method is 
not suitable for solving an equation like 5x  160 because 160 is not easily expressed 
as a power of the base 5. To solve such equations, we take the logarithm of each side 
and use Law 3 of logarithms to “bring down the exponent.” The following guidelines 
describe the process.

Guidelines for Solving Exponential Equations

1.	 Isolate the exponential expression on one side of the equation.

2.	� Take the logarithm of each side, then use the Laws of Logarithms to “bring 
down the exponent.”

3.	 Solve for the variable.

Example 2  ■  Solving an Exponential Equation
Consider the exponential equation 3x2  7. 

(a)	 Find the exact solution of the equation expressed in terms of logarithms.

(b)	 �Use a calculator to find an approximation to the solution rounded to six decimal 
places.

Law 3: loga A
C  C loga A

Discovery Project

Super Origami

Origami is the traditional Japanese art of folding paper to create illustrations. In 
this project we explore some thought experiments about folding paper. Suppose 
that you fold a sheet of paper in half, then fold it in half again, and continue to 
fold the paper in half. How many folds are needed to obtain a mile-high stack 
of paper? To answer this question, we need to solve an exponential equation. In 
this project we use logarithms to answer this and other thought questions about 
folding paper. You can find the project at www.stewartmath.com.
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362  CHAPTER 4  ■  Exponential and Logarithmic Functions

SOLUTION 

(a)	 We take the common logarithm of each side and use Law 3.

 3x2  7     Given equation

 log13x2 2  log 7     Take log of each side

 1x  2 2 log 3  log 7     Law 3 (bring down exponent)

 x  2 
log 7

log 3
    Divide by log 3

 x 
log 7

log 3
 2    Subtract 2

	 	 The exact solution is x 
log 7

log 3
 2.

(b)	 �Using a calculator, we find the decimal approximation x < 0.228756.

Now Try Exercise 15	 ■

Example 3  ■  Solving an Exponential Equation
Solve the equation 8e2x  20.

SOLUTION    We first divide by 8 to isolate the exponential term on one side of the 
equation.

 8e2x  20     Given equation

 e2x  20
8     Divide by 8

 ln e2x  ln 2.5     Take ln of each side

 2x  ln 2.5     Property of ln

 x 
ln 2.5

2
    Divide by 2 (exact solution)

 < 0.458     Calculator (approximate solution)

Now Try Exercise 17	 ■

Example 4  ■  �Solving an Exponential Equation Algebraically  
and Graphically

Solve the equation e32x  4 algebraically and graphically.

SOLUTION 1:  Algebraic
Since the base of the exponential term is e, we use natural logarithms to solve this 
equation.

 e32x  4     Given equation

 ln1e32x 2  ln 4     Take ln of each side

 3  2x  ln 4     Property of ln

 2x  3  ln 4     Subtract 3

 x  1
2 13  ln 4 2 < 0.807    Multiply by  

1
2

You should check that this answer satisfies the original equation.

We could have used natural logarithms 
instead of common logarithms. In  
fact, using the same steps, we get

x 
ln 7

ln 3
 2 < 0.228756

Check Your Answer

Substituting x  0.228756 into the 
original equation and using a calcula-
tor, we get

310.22875622 < 7  ✓

Check Your Answer

Substituting x  0.458 into the original 
equation and using a calculator, we get

8e210.4582 < 20  ✓
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SOLUTION 2:  Graphical
We graph the equations y  e32x and y  4 in the same viewing rectangle as in  
Figure 1. The solutions occur where the graphs intersect. Zooming in on the point of  
intersection of the two graphs, we see that x ^ 0.81.

Now Try Exercise 21	 ■

Example 5  ■  An Exponential Equation of Quadratic Type
Solve the equation e2x  ex  6  0.

SOLUTION    To isolate the exponential term, we factor.

	  e2x  ex  6  0 	 Given equation

	  1ex 2 2  ex  6  0 	 Law of Exponents

	  1ex  3 2 1ex  2 2  0 	 Factor (a quadratic in ex)

 ex  3  0  or   ex  2  0 	 Zero-Product Property

 ex  3  ex  2

The equation ex  3 leads to x  ln 3. But the equation ex  2 has no solution 
because ex  0 for all x. Thus x  ln 3 ^ 1.0986 is the only solution. You should 
check that this answer satisfies the original equation.

Now Try Exercise 39	 ■

Example 6  ■  An Equation Involving Exponential Functions
Solve the equation  3xex  x2ex  0.

SOLUTION    First we factor the left side of the equation.

	  3xex  x2ex  0	 Given equation

	  x13  x 2ex  0	 Factor out common factors

	  x13  x 2  0	 Divide by ex (because ex 2 0)

	 x  0  or  3  x  0	 Zero-Product Property

Thus the solutions are x  0 and x  3.

Now Try Exercise 45	 ■

■  Logarithmic Equations
A logarithmic equation is one in which a logarithm of the variable occurs. Some loga-
rithmic equations can be solved by using the fact that logarithmic functions are one-to-
one. This means that 

loga x  loga y 1 x  y

We use this property in the next example. 

Example 7  ■  Solving a Logarithmic Equation
Solve the equation log1x2  1 2  log1x  2 2  log1x  3 2 .

If we let „  ex, we get the quadratic 
equation

„2  „  6  0

which factors as

1„  3 2 1„  2 2  0

5

0
2

y=4

y=e3_2x

Figure 1

Check Your Answer

x  0:

    310 2e0  02e0  0  ✓

x  3:

  313 2e3  13 2 2e3

           9e3  9e3  0  ✓
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SOLUTION    First we combine the logarithms on the right-hand side, and then we use 
the one-to-one property of logarithms.  

 log51x2  1 2  log51x  2 2  log51x  3 2         Given equation

 log51x2  1 2  log5 3 1x  2 2 1x  3 2 4         Law 1: loga AB  loga A  loga B

 log51x2  1 2  log51x2  x  6 2         Expand 

 x2  1  x2  x  6         log is one-to-one (or raise 5 to each side)

 x  7         Solve for x

The solution is x  7. (You can check that x  7 satisfies the original equation.)

Now Try Exercise 49	 ■

The method of Example 7 is not suitable for solving an equation like log5 x  13 
because the right-hand side is not expressed as a logarithm (base 5). To solve such equa-
tions, we use the following guidelines.

Guidelines for Solving Logarithmic Equations

1.	� Isolate the logarithmic term on one side of the equation; you might first 
need to combine the logarithmic terms.

2.	� Write the equation in exponential form (or raise the base to each side of the 
equation).

3.	 Solve for the variable.

Example 8  ■  Solving Logarithmic Equations
Solve each equation for x.

(a)	 ln x  8              

(b)	 log2125  x 2  3

SOLUTION

(a)	 		  ln x  8         Given equation

	 			   x  e8        Exponential form

	 	 Therefore x  e8 ^ 2981.
	 	     We can also solve this problem another way.

 ln x  8     Given equation

 eln x  e8    Raise e to each side

 x  e8    Property of ln

(b)	 The first step is to rewrite the equation in exponential form.

 log2125  x 2  3     Given equation

 25  x  23     Exponential form (or raise 2 to each side)

 25  x  8

 x  25  8  17

Now Try Exercises 55 and 59	 ■

Check Your Answer

If x  17, we get

log2125  17 2  log2 8  3  ✓
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Example 9  ■  Solving a Logarithmic Equation
Solve the equation 4  3 log12x 2  16.

SOLUTION    We first isolate the logarithmic term. This allows us to write the equation 
in exponential form.

 4  3 log12x 2  16     Given equation

 3 log12x 2  12     Subtract 4

 log12x 2  4     Divide by 3

 2x  104     Exponential form (or raise 10 to each side)

 x  5000    Divide by 2

Now Try Exercise 61	 ■

Example 10  ■  �Solving a Logarithmic Equation Algebraically  
and Graphically

Solve the equation log1x  2 2  log1x  1 2  1 algebraically and graphically.

SOLUTION 1:  Algebraic
We first combine the logarithmic terms, using the Laws of Logarithms.

 log 3 1x  2 2 1x  1 2 4  1     Law 1

 1x  2 2 1x  1 2  10    Exponential form (or raise 10 to each side)

 x2  x  2  10    Expand left side

 x2  x  12  0     Subtract 10

 1x  4 2 1x  3 2  0     Factor

 x  4  or  x  3

We check these potential solutions in the original equation and find that x  4 is 
not a solution (because logarithms of negative numbers are undefined), but x  3 is a 
solution. (See Check Your Answers.)

SOLUTION 2:  Graphical
We first move all terms to one side of the equation:

log1x  2 2  log1x  1 2  1  0

Then we graph

y  log1x  2 2  log1x  1 2  1

as in Figure 2. The solutions are the x-intercepts of the graph. Thus the only solution 
is x ^ 3.

Now Try Exercise 63	 ■

Example 11  ■  Solving a Logarithmic Equation Graphically
Solve the equation x2  2 ln1x  2 2 .
SOLUTION    We first move all terms to one side of the equation.

x2  2 ln1x  2 2  0

Then we graph

y  x2  2 ln1x  2 2

In Example 11 it’s not possible to iso-
late x algebraically, so we must solve 
the equation graphically.

Check Your Answer

If x  5000, we get

 4  3 log 215000 2  4  3 log 10,000

  4  314 2
  16  ✓

Check Your Answers

x  4:

log14  2 2  log14  1 2
 log12 2  log15 2

	 undefined  ✗

x  3:

  log13  2 2  log13  1 2
     log 5  log 2  log15 # 2 2
     log 10  1  ✓

Figure 2

3

0 6

_3
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366  CHAPTER 4  ■  Exponential and Logarithmic Functions

as in Figure 3. The solutions are the x-intercepts of the graph. Zooming in on the  
x-intercepts, we see that there are two solutions:

x < 0.71  and  x < 1.60

Now Try Exercise 69	 ■

Logarithmic equations are used in determining the amount of light that reaches 
various depths in a lake. (This information helps biologists to determine the types of 
life a lake can support.) As light passes through water (or other transparent materials 
such as glass or plastic), some of the light is absorbed. It’s easy to see that the murkier 
the water, the more light is absorbed. The exact relationship between light absorption 
and the distance light travels in a material is described in the next example.

Example 12  ■  Transparency of a Lake
If I0 and I denote the intensity of light before and after going through a material  
and x is the distance (in feet) the light travels in the material, then according to the 
Beer-Lambert Law,

 

1

k
 ln a I

I0
b  x

where k is a constant depending on the type of material.

(a)	 Solve the equation for I.

(b)	 �For a certain lake k  0.025, and the light intensity is I0  14 lumens (lm). Find 
the light intensity at a depth of 20 ft.

SOLUTION

(a)	 We first isolate the logarithmic term.

  

1

k
 ln a I

I0
b  x     Given equation

 ln a I

I0
b  kx     Multiply by k

 
I

I0
 ekx     Exponential form

 I  I0ekx    Multiply by I0

(b)	 We find I using the formula from part (a).

 I  I0ekx     From part (a)

  14e 10.02521202    I0  14, k  0.025, x  20

 < 8.49     Calculator

	 	 The light intensity at a depth of 20 ft is about 8.5 lm.

Now Try Exercise 99	 ■

■ C ompound Interest
Recall the formulas for interest that we found in Section 4.1. If a principal P is invested at 
an interest rate r for a period of t years, then the amount A of the investment is given by

 A  P11  r 2     Simple interest (for one year)

 A1 t 2  Pa 1 
r
n
b

nt

    Interest compounded n times per year

 A1 t 2  Pert     Interest compounded continuously

The intensity of light in a lake  
diminishes with depth.

2

_2 3

_2

Figure 3
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SECTION 4.5  ■  Exponential and Logarithmic Equations  367

We can use logarithms to determine the time it takes for the principal to increase to 
a given amount.

Example 13  ■  Finding the Term for an Investment to Double
A sum of $5000 is invested at an interest rate of 5% per year. Find the time required for 
the money to double if the interest is compounded according to the following methods.

(a)	 Semiannually                  (b)  Continuously

SOLUTION

(a)	 �We use the formula for compound interest with P  $5000, A1t 2  $10,000,  
r  0.05, and n  2, and solve the resulting exponential equation for t.

 5000 a 1 
0.05

2
b

2t

 10,000     P a1 
r

n
b

nt

 A

 11.025 2 2t  2     Divide by 5000

 log 1.0252t  log 2     Take log of each side

 2t log 1.025  log 2     Law 3 (bring down the exponent)

 t 
log 2

2 log 1.025
    Divide by 2 log 1.025

 t < 14.04     Calculator

	 	 The money will double in 14.04 years.

(b)	 �We use the formula for continuously compounded interest with P  $5000, 
A1 t 2  $10,000, and r  0.05 and solve the resulting exponential equation for t.

 5000e0.05t  10,000    Pert  A

 e0.05t  2     Divide by 5000

 ln e0.05t  ln 2     Take ln of each side

 0.05t  ln 2     Property of ln

 t 
ln 2

0.05
    Divide by 0.05

 t < 13.86     Calculator

	 	 The money will double in 13.86 years.

Now Try Exercise 89	 ■

Example 14  ■  Time Required to Grow an Investment
A sum of $1000 is invested at an interest rate of 4% per year. Find the time required 
for the amount to grow to $4000 if interest is compounded continuously.

SOLUTION    We use the formula for continuously compounded interest with P  $1000, 
A1 t 2  $4000, and r  0.04 and solve the resulting exponential equation for t.

 1000e0.04t  4000     Pert  A

 e0.04t  4     Divide by 1000

 0.04t  ln 4     Take ln of each side

 t 
ln 4

0.04
    Divide by 0.04

 t < 34.66    Calculator

The amount will be $4000 in about 34 years and 8 months.

Now Try Exercise 91	 ■

Radiocarbon Dating is a method that 
archeologists use to determine the age of 
ancient objects. The carbon dioxide in 
the atmosphere always contains a fixed 
fraction of radioactive carbon, carbon-14 
(14C), with a half-life of about 5730 years. 
Plants absorb carbon dioxide from the 
atmosphere, which then makes its way to 
animals through the food chain. Thus, all 
living creatures contain the same fixed 
proportions of 14C to nonradioactive 12C 
as the atmosphere.

After an organism dies, it stops assim-
ilating 14C, and the amount of 14C in it 
begins to decay exponentially. We can 
then determine the time that has elapsed 
since the death of the organism by mea-
suring the amount of 14C left in it.

For example, if a donkey bone con-
tains 73% as much 14C as a living donkey 
and it died t years ago, then by the for-
mula for radioactive decay (Section 4.6),

0.73 5 (1.00)e2(t ln 2)/5730

We solve this exponential equation to 
find t < 2600, so the bone is about  
2600 years old.
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368  CHAPTER 4  ■  Exponential and Logarithmic Functions

concepts
	 1.	 Let’s solve the exponential equation 2ex  50.

(a)	� First, we isolate ex to get the equivalent equation 

   .

(b)	� Next, we take ln of each side to get the equivalent

	 equation    .

(c)	 Now we use a calculator to find x <    .

	 2.	 Let’s solve the logarithmic equation 

log 3  log1x  2 2  log x

(a)	� First, we combine the logarithms on the LHS to get the 

	 equivalent equation    .

(b)	 Next, we use the fact that log is one-to-one to get the

	 equivalent equation    .

(c)	 Now we find x     .

skills
3–10  ■  Exponential Equations    Find the solution of the expo-
nential equation, as in Example 1.

	 3.	 5x1  125	   4.	 e x2

 e9

	 5.	 52x3  1	   6.	 102x3  1
10

	 7.	 72x3  765x	   8.	 e12x  e3x5

	 9.	 6x21  61x2

	 10.	 102x23  109x2

11–38  ■  Exponential Equations    (a) Find the exact solution of 
the exponential equation in terms of logarithms. (b) Use a calcu-
lator to find an approximation to the solution rounded to six deci-
mal places.

	11.	 10x  25	 12.	 10x  4

	13.	 e5x  10	 14.	 e0.4x  8

	15.	 21x  3	 16.	 32x1  5

	17.	 3ex  10	 18.	 2e12x  17

19.	 30011.025 2 12t  1000	 20.	 1011.375 2 10t  50

	21.	 e14x  2	 22.	 e35x  16

	23.	 257x  15	 24.	 23x  34

	25.	 3x/14  0.1	 26.	 5x/100  2

27.	 411  105x 2  9	 28.	 215  3x1 2  100

29.	 8  e14x  20	 30.	 1  e4x1  20

31.	 4x  212x  50	 32.	 125x  53x1  200

	33.	 5x  4x1	 34.	 101x  6x

35.	 23x1  3x2	 36.	 7x/2  51x

	37.	
50

1  ex  4	 38.	
10

1  ex  2

39–44  ■  Exponential Equations of Quadratic Type    Solve the 
equation.

	39.	 e2x  3ex  2  0	 40.	 e2x  e x  6  0

	41.	 e4x  4e2x  21  0	 42.	 34x  32x  6  0

43.	 2x  1012x 2  3  0	 44.	 e x  15ex  8  0

45–48  ■  Equations Involving Exponential Functions    Solve the 
equation.

	45.	 x22x  2x  0	 46.	 x210x  x10x  2110x 2
47.	 4x3e3x  3x4e3x  0	 48.	 x2e x  xe x  e x  0

49–54  ■  Logarithmic Equations    Solve the logarithmic equation 
for x, as in Example 7.

	49.	 log x  log1x  1 2  log14x 2
50.	 log5  x  log51x  1 2  log5 20

51.	 2 log x  log 2  log13x  4 2
52.	 lnAx  1

2 B  ln 2  2 ln x

53.	 log2 3  log2 x  log2 5  log21x  2 2
54.	 log41x  2 2  log4 3  log4 5  log412x  3 2

55–68  ■  Logarithmic Equations    Solve the logarithmic equation 
for x.

	55.	 ln x  10	 56.	 ln12  x 2  1

	57.	 log x  2	 58.	 log1x  4 2  3

	59.	 log13x  5 2  2	 60.	 log312  x 2  3

	61.	 4  log13  x 2  3

	62.	 log21x2  x  2 2  2

	63.	 log2 x  log21x  3 2  2

	64.	 log x  log1x  3 2  1

65.	 log9 1x  5 2  log9 1x  3 2  1

66.	 ln1x  1 2  ln1x  2 2  1

67.	 log51x  1 2  log51x  1 2  2

	68.	 log31x  15 2  log31x  1 2  2

69–76  ■  Solving Equations Graphically    Use a graphing device 
to find all solutions of the equation, rounded to two decimal 
places.

	69.	 ln x  3  x	 70.	 log x  x2  2

	71.	 x3  x  log1x  1 2 	 72.	 x  ln14  x2 2
	73.	 e x  x	 74.	 2x  x  1

75.	 4x  !x	 76.	 e x2

 2  x3  x

77–78  ■  More Exponential and Logarithmic Equations    Solve 
the equation for x.

77.	 22/log5 x  1
16 	 78.	 log2 1 log3 x 2  4

4.5  Exercises
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SECTION 4.5  ■  Exponential and Logarithmic Equations  369

skills plus

79–82  ■  Solving Inequalities    Solve the inequality.

	79.	 log1x  2 2  log19  x 2  1

	80.	 3 # log2 x # 4

	81.	 2  10x  5

	82.	 x 2ex  2ex  0

83–86  ■  Inverse Functions    Find the inverse function of f.

83.	 f 1x 2  22x

	84.	 f 1x 2  3x1

85.	 f 1x 2  log21x  1 2
	86.	 f 1x 2  log 3x

87–88  ■  Special Logarithmic Equations    Find the value(s) of x 
for which the equation is true.

	87.	 log1x  3 2  log x  log 3

	88.	 1 log x 2 3  3 log x

applications
	89.	 Compound Interest    A man invests $5000 in an account that 

pays 8.5% interest per year, compounded quarterly.

(a)	 Find the amount after 3 years.

(b)	 How long will it take for the investment to double?

	90.	 Compound Interest    A woman invests $6500 in an account 
that pays 6% interest per year, compounded continuously.

(a)	 What is the amount after 2 years?

(b)	 How long will it take for the amount to be $8000?

	91.	 Compound Interest    Find the time required for an invest-
ment of $5000 to grow to $8000 at an interest rate of 7.5% 
per year, compounded quarterly.

	92.	 Compound Interest    Nancy wants to invest $4000 in saving 
certificates that bear an interest rate of 9.75% per year, com-
pounded semiannually. How long a time period should she 
choose to save an amount of $5000?

	93.	 Doubling an Investment    How long will it take for an invest-
ment of $1000 to double in value if the interest rate is 8.5% 
per year, compounded continuously?

	94.	 Interest Rate    A sum of $1000 was invested for 4 years,  
and the interest was compounded semiannually. If this sum 
amounted to $1435.77 in the given time, what was the inter-
est rate?

	95.	 Radioactive Decay    A 15-g sample of radioactive iodine 
decays in such a way that the mass remaining after  
t days is given by m1 t 2  15e0.087t, where m1 t 2  is  
measured in grams. After how many days are there only  
5 g remaining?

	96.	 Sky Diving    The velocity of a sky diver t seconds after 
jumping is given by √ 1 t 2  8011  e0.2t 2 . After how many 
seconds is the velocity 70 ft/s?

	 97.	 Fish Population    A small lake is stocked with a certain 
species of fish. The fish population is modeled by the 
function

P 
10

1  4e0.8t

		  where P is the number of fish in thousands and t is  
measured in years since the lake was stocked.

(a)	 Find the fish population after 3 years.

(b)	 �After how many years will the fish population reach 
5000 fish?

	 98.	 Transparency of a 
Lake    Environmental sci-
entists measure the inten-
sity of light at various 
depths in a lake to find the 
“transparency” of the 
water. Certain levels of 
transparency are required 
for the biodiversity of the 
submerged macrophyte 
population. In a certain 
lake the intensity of light 
at depth x is given by

I  10e0.008x

		  where I is measured in lumens and x in feet.

(a)	 Find the intensity I at a depth of 30 ft.

(b)	 At what depth has the light intensity dropped to I  5?

	 99.	 Atmospheric Pressure    Atmospheric pressure P (in kilopas-
cals, kPa) at altitude h (in kilometers, km) is governed by 
the formula

lna P

P0
b   

h

k

		  where k  7 and P0  100 kPa are constants.

(a)	 Solve the equation for P.

(b)	 Use part (a) to find the pressure P at an altitude of  
4 km.

	100.	 Cooling an Engine    Suppose you’re driving your car on a 
cold winter day (20F outside) and the engine overheats (at 
about 220F). When you park, the engine begins to cool 
down. The temperature T of the engine t minutes after you 
park satisfies the equation

ln a T  20

200
b  0.11t

(a)	 Solve the equation for T.

(b)	 �Use part (a) to find the temperature of the engine after  
20 min 1t  202.

	101.	 Electric Circuits    An electric circuit contains a battery that 
produces a voltage of 60 volts (V), a resistor with a resis
tance of 13 ohms (), and an inductor with an inductance 
of 5 henrys (H), as shown in the figure on the following 
page. Using calculus, it can be shown that the current 
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370  CHAPTER 4  ■  Exponential and Logarithmic Functions

I  I1 t 2  (in amperes, A) t seconds after the switch is closed 
is I  60

13 11  e13t/5 2 .
(a)	 �Use this equation to express the time t as a function of 

the current I.

(b)	 After how many seconds is the current 2 A?

60 V

13 �

5 H

Switch

	102.	 Learning Curve    A learning curve is a graph of a function 
P1 t 2  that measures the performance of someone learning a 
skill as a function of the training time t. At first, the rate of 
learning is rapid. Then, as performance increases and 
approaches a maximal value M, the rate of learning 
decreases. It has been found that the function

P1 t 2  M  Cekt

		  where k and C are positive constants and C  M is a rea-
sonable model for learning.

(a)	 �Express the learning time t as a function of the per
formance level P.

(b)	 �For a pole-vaulter in training, the learning curve is  
given by

P1 t 2  20  14e0.024t

	 �where P1 t 2  is the height he is able to pole-vault after 
t months. After how many months of training is he able 
to vault 12 ft?

(c)	 Draw a graph of the learning curve in part (b).

DiSCUSS  ■ DI SCOVER  ■  PROVE  ■  WRITE
	103.	 DISCUSS:  Estimating a Solution    Without actually solving 

the equation, find two whole numbers between which the 
solution of 9x  20 must lie. Do the same for 9x  100. 
Explain how you reached your conclusions.

	104.	� DISCUSS  ■ DI SCOVER:  A Surprising Equation    Take loga-
rithms to show that the equation

x1/log x  5

		  has no solution. For what values of k does the equation

x1/log x  k

		�  have a solution? What does this tell us about the graph of 
the function f 1x 2  x1/log x? Confirm your answer using a 
graphing device.

	105.	� DISCUSS:  Disguised Equations    Each of these equations 
can be transformed into an equation of linear or quadratic 
type by applying the hint. Solve each equation.

(a)	 1x  1 2 log1x12  1001x  1 2
	 [Hint: Take log of each side.]

(b)	 log2 x  log4 x  log8 x  11
	 [Hint: Change all logs to base 2.]

(c)	 4x  2x1  3
	 [Hint: Write as a quadratic in 2x.]

4.6  Modeling with Exponential Functions
■  Exponential Growth (Doubling Time)  ■  Exponential Growth (Relative Growth Rate)   
■ R adioactive Decay  ■  Newton’s Law of Cooling

Many processes that occur in nature, such as population growth, radioactive decay, heat 
diffusion, and numerous others, can be modeled by using exponential functions. In this 
section we study exponential models.

■  Exponential Growth (Doubling Time)
Suppose we start with a single bacterium, which divides every hour. After one hour we 
have 2 bacteria, after two hours we have 22 or 4 bacteria, after three hours we have 23 
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SECTION 4.6  ■  Modeling with Exponential Functions  371

or 8 bacteria, and so on (see Figure 1). We see that we can model the bacteria population 
after t hours by f 1 t 2  2t.

Figure 1  Bacteria population

0 1 2 3 4 5 6

If we start with 10 of these bacteria, then the population is modeled by f 1 t 2  10 # 2t. 
A slower-growing strain of bacteria doubles every 3 hours; in this case the population 
is modeled by f 1 t 2  10 # 2t/3. In general, we have the following.

Exponential Growth (Doubling Time)

If the initial size of a population is n0 and the doubling time is a, then the size 
of the population at time t is 

n1 t 2  n02t/a

where a and t are measured in the same time units (minutes, hours, days, years, 
and so on).

Example 1  ■  Bacteria Population 
Under ideal conditions a certain bacteria population doubles every three hours. Ini-
tially, there are 1000 bacteria in a colony.

(a)	 Find a model for the bacteria population after t hours.

(b)	 How many bacteria are in the colony after 15 hours?

(c)	 After how many hours will the bacteria count reach 100,000?

Solution  

(a)	 The population at time t is modeled by 

n1 t 2  1000 # 2t/3

	 	 where t is measured in hours.

(b)	 After 15 hours the number of bacteria is 

n115 2  1000 # 215/3  32,000

(c)	 �We set n1 t 2  100,000 in the model that we found in part (a) and solve the 
resulting exponential equation for t.

 100,000  1000 # 2t/3         n1 t 2  1000 # 2t/3

 100  2t/3         Divide by 1000

 log 100  log 2t/3         Take log of each side

 2 
t

3
  log 2         Properties of log

 t 
6

log 2
< 19.93        Solve for t

	 	 The bacteria level reaches 100,000 in about 20 hours.

Now Try Exercise 1	 ■
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372  CHAPTER 4  ■  Exponential and Logarithmic Functions

Example 2  ■  Rabbit Population 
A certain breed of rabbit was introduced onto a small island 8 months ago. The  
current rabbit population on the island is estimated to be 4100 and doubling every  
3 months. 

(a)	 What was the initial size of the rabbit population?

(b)	 Estimate the population 1 year after the rabbits were introduced to the island.

(c)	 Sketch a graph of the rabbit population.

Solution  

(a)	 The doubling time is a  3, so the population at time t is 

n1 t 2  n02t/3        Model

	 �	 where n0 is the initial population. Since the population is 4100 when t is  
8 months, we have 

 n18 2  n028/3        From model

 4100  n028/3        Because n18 2  4100

 n0 
4100

28/3
        Divide by 28/3 and switch sides

 n0 < 645         Calculator

	 	 Thus we estimate that 645 rabbits were introduced onto the island. 

(b)	 �From part (a) we know that the initial population is n0  645, so we can model 
the population after t months by 

n1 t 2  645 # 2t/3        Model

	 	 After 1 year t  12, so

n112 2  645 # 212/3  10,320

	 	 So after 1 year there would be about 10,000 rabbits.

(c)	 We first note that the domain is t $ 0. The graph is shown in Figure 2.

0 20

20,000

Figure 2  n1 t 2  645 # 2t/3

Now Try Exercise 3	 ■

■  Exponential Growth (Relative Growth Rate)
We have used an exponential function with base 2 to model population growth (in terms 
of the doubling time). We could also model the same population with an exponential 
function with base 3 (in terms of the tripling time). In fact, we can find an exponential 
model with any base. If we use the base e, we get a population model in terms of the 
relative growth rate r: the rate of population growth expressed as a proportion of the 
population at any time. In this case r is the “instantaneous” growth rate. (In calculus  
the concept of instantaneous rate is given a precise meaning.) For instance, if r  0.02, 
then at any time t the growth rate is 2% of the population at time t.

The growth of a population with rela-
tive growth rate r is analogous to the 
growth of an investment with continu-
ously compounded interest rate r.
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SECTION 4.6  ■  Modeling with Exponential Functions  373

Exponential Growth (Relative growth rate)

A population that experiences exponential growth increases according to the 
model

n1 t 2  n0e rt

where	  n1 t 2  population at time t

	  n0  initial size of the population

	  r  �relative rate of growth (expressed as a proportion of the 
population)

	  t  time

Notice that the formula for population growth is the same as that for continuously 
compounded interest. In fact, the same principle is at work in both cases: The growth 
of a population (or an investment) per time period is proportional to the size of  
the population (or the amount of the investment). A population of 1,000,000 will 
increase more in one year than a population of 1000; in exactly the same way, an 
investment of $1,000,000 will increase more in one year than an investment of 
$1000.

In the following examples we assume that the populations grow exponentially.

Example 3  ■  Predicting the Size of a Population
The initial bacterium count in a culture is 500. A biologist later makes a sample  
count of bacteria in the culture and finds that the relative rate of growth is 40%  
per hour.

(a)	 Find a function that models the number of bacteria after t hours.

(b)	 What is the estimated count after 10 hours?

(c)	 After how many hours will the bacteria count reach 80,000?

(d)	 Sketch a graph of the function n1 t 2 .
SOLUTION

(a)	 We use the exponential growth model with n0  500 and r  0.4 to get

n1 t 2  500e0.4t

	 	 where t is measured in hours.

(b)	 Using the function in part (a), we find that the bacterium count after 10 hours is

n110 2  500e0.4 1102  500e4 < 27,300

(c)	 We set n1 t 2  80,000 and solve the resulting exponential equation for t.

 80,000  500 # e0.4t         n1 t 2  500 # e0.4t

 160  e0.4t         Divide by 500

 ln 160  0.4t         Take ln of each side

 t 
ln 160

0.4
< 12.68        Solve for t

		  The bacteria level reaches 80,000 in about 12.7 hours.

(d)	 The graph is shown in Figure 3.

Now Try Exercise 5	 ■

0

5000

6
500

n(t)=500eº—¢‰

Figure 3
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374  CHAPTER 4  ■  Exponential and Logarithmic Functions

Example 4  ■  Comparing Different Rates of Population Growth
In 2000 the population of the world was 6.1 billion, and the relative rate of growth 
was 1.4% per year. It is claimed that a rate of 1.0% per year would make a significant 
difference in the total population in just a few decades. Test this claim by estimating 
the population of the world in the year 2050 using a relative rate of growth of  
(a) 1.4% per year and (b) 1.0% per year.

Graph the population functions for the next 100 years for the two relative growth 
rates in the same viewing rectangle.

SOLUTION

(a)	 By the exponential growth model we have

n1 t 2  6.1e0.014t

	 	� where n1 t 2  is measured in billions and t is measured in years since 2000. Because 
the year 2050 is 50 years after 2000, we find

n150 2  6.1e0.014 1502  6.1e0.7 < 12.3

	 	 The estimated population in the year 2050 is about 12.3 billion.

(b)	 We use the function

 n1 t 2  6.1e0.010t

	 	 and find
 n150 2  6.1e0.010 1502  6.1e0.50 < 10.1

	 	 The estimated population in the year 2050 is about 10.1 billion.

The graphs in Figure 4 show that a small change in the relative rate of growth will, 
over time, make a large difference in population size.

Now Try Exercise 7	 ■

Example 5  ■  Expressing a Model in Terms of e 
A culture starts with 10,000 bacteria, and the number doubles every 40 minutes.

(a)	 �Find a function n1 t 2  n02t/a that models the number of bacteria after t hours.

(b)	 �Find a function n1 t 2  n0ert that models the number of bacteria after t hours.

(c)	 Sketch a graph of the number of bacteria at time t.

Solution  

(a)	 �The initial population is n0  10,000. The doubling time is a  40 min  2/3 h. 
Since 1/a  3/2  1.5, the model is

n1 t 2  10,000 # 21.5t

(b)	 �The initial population is n0  10,000. We need to find the relative growth rate r. 
Since there are 20,000 bacteria when t  2/3 h, we have

 20,000  10,000er 12/32         n1 t 2  10,000ert

 2  er 12/32         Divide by 10,000

 ln 2  ln er 12/32         Take ln of each side

 ln 2  r 12/3 2         Property of ln

 r 
3 ln 2

2
< 1.0397        Solve for r

	 	 Now that we know the relative growth rate r, we can find the model:

n1 t 2  10,000e1.0397t

The relative growth of world popula-
tion has been declining over the past 
few decades—from 2% in 1995 to 
1.1% in 2013.

Standing Room Only
The population of the world was about 
6.1 billion in 2000 and was increasing at 
1.4% per year. Assuming that each per-
son occupies an average of 4 ft2 of the 
surface of the earth, the exponential 
model for population growth projects 
that by the year 2801 there will be stand
ing room only! (The total land surface 
area of the world is about 1.8  1015 ft2.)

30

0 100

n(t)=6.1e0.014t

n(t)=6.1e0.01t

FIGURE 4
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SECTION 4.6  ■  Modeling with Exponential Functions  375

(c)	 �We can graph the model in part (a) or the one in part (b). The graphs are identi-
cal. See Figure 5.

FIGURE 5  Graphs of y  10,000 # 21.5t  
and y  10,000e1.0397t 0 4

500,000

Now Try Exercise 9	 ■

■ R adioactive Decay
Radioactive substances decay by spontaneously emitting radiation. The rate of decay is 
proportional to the mass of the substance. This is analogous to population growth except that 
the mass decreases. Physicists express the rate of decay in terms of half-life, the time it takes 
for a sample of the substance to decay to half its original mass. For example, the half-life of 
radium-226 is 1600 years, so a 100-g sample decays to 50 g Aor 12  100 gB  in 1600 years, 
then to 25 g Aor 12  1

2  100 gB  in 3200 years, and so on. In general, for a radioactive 
substance with mass m0 and half-life h, the amount remaining at time t is modeled by

m1 t 2  m02t/h

where h and t are measured in the same time units (minutes, hours, days, years, and so on). 
To express this model in the form m1 t 2  m0ert, we need to find the relative decay 

rate r. Since h is the half-life, we have

 m1 t 2  m0ert         Model

 
m0

2
 m0erh        h is the half-life

 
1

2
 erh         Divide by m0

 ln 
1

2
 rh         Take ln of each side

 r 
ln 2

h
        Solve for r

This last equation allows us to find the relative decay rate r from the half-life h.

The half-lives of radioactive elements 
vary from very long to very short. Here 
are some examples.

Element	H alf-life

Thorium-232	 14.5 billion years
Uranium-235	 4.5 billion years
Thorium-230	 80,000 years
Plutonium-239	 24,360 years
Carbon-14	 5,730 years
Radium-226	 1,600 years
Cesium-137	 30 years
Strontium-90	 28 years
Polonium-210	 140 days
Thorium-234	 25 days
Iodine-135	 8 days
Radon-222	 3.8 days
Lead-211	 3.6 minutes
Krypton-91	 10 seconds

Discovery Project

Modeling Radiation with Coins and Dice

Radioactive elements decay when their atoms spontaneously emit radiation  
and change into smaller, stable atoms. But if atoms decay randomly, how is  
it possible to find a function that models their behavior? We’ll try to answer  
this question by experimenting with randomly tossing coins and rolling dice. 
The experiments allow us to experience how a very large number of random 
events can result in predictable exponential results. You can find the project at 
www.stewartmath.com.
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376  CHAPTER 4  ■  Exponential and Logarithmic Functions

Radioactive Decay Model

If m0 is the initial mass of a radioactive substance with half-life h, then the 
mass remaining at time t is modeled by the function

m1 t 2  m0ert

where  r 
ln 2

h
 is the relative decay rate.

Example 6  ■  Radioactive Decay
Polonium-210 1 210Po 2  has a half-life of 140 days. Suppose a sample of this  
substance has a mass of 300 mg.

(a)	 �Find a function m1 t 2  m02t/h that models the mass remaining after  
t days.

(b)	 �Find a function m1 t 2  m0ert that models the mass remaining after  
t days.

(c)	 Find the mass remaining after one year.

(d)	 How long will it take for the sample to decay to a mass of 200 mg?

(e)	 Draw a graph of the sample mass as a function of time.

SOLUTION

(a)	 �We have m0  300 and h  140, so the amount remaining after t days is

m1 t 2  300 # 2t/140

(b)	� We have m0  300 and r  ln 2/140 < 0.00495, so the amount remaining 
after t days is

m1 t 2  300 # e0.00495t

(c)	 We use the function we found in part (a) with t  365 (1 year):

m1365 2  300e0.0049513652 < 49.256

	 	 Thus approximately 49 mg of 210Po remains after 1 year.

(d)	 �We use the function that we found in part (b) with m1 t 2  200 and solve the 
resulting exponential equation for t:

 300e0.00495t  200     m1 t 2  m0 ert

 e0.00495t  2
3     Divide by 300

 ln e0.00495t  ln 23     Take ln of each side

 0.00495t  ln 23     Property of ln

 t   

ln 23
0.00495

    Solve for t

 t < 81.9     Calculator

	 	 The time required for the sample to decay to 200 mg is about 82 days.

(e)	 �We can graph the model in part (a) or the one in part (b). The graphs are identi-
cal. See Figure 6.

Now Try Exercise 17	 ■

In parts (c) and (d) we can also use the 
model found in part (a). Check that the 
result is the same using either model.
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m(t)=300 e_0.00495t
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Figure 6
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SECTION 4.6  ■  Modeling with Exponential Functions  377

■  Newton’s Law of Cooling
Newton’s Law of Cooling states that the rate at which an object cools is proportional to 
the temperature difference between the object and its surroundings, provided that the 
temperature difference is not too large. By using calculus, the following model can be 
deduced from this law.

Newton’s Law of Cooling

If D0 is the initial temperature difference between an object and its surround-
ings, and if its surroundings have temperature Ts, then the temperature of the 
object at time t is modeled by the function

T1 t 2  Ts  D0ekt

where k is a positive constant that depends on the type of object.

Example 7  ■  Newton’s Law of Cooling
A cup of coffee has a temperature of 200F and is placed in a room that has a temper-
ature of 70F. After 10 min the temperature of the coffee is 150F.

(a)	 �Find a function that models the temperature of the coffee at time t.

(b)	 Find the temperature of the coffee after 15 min.

(c)	 �After how long will the coffee have cooled to 100F?

(d)	 �Illustrate by drawing a graph of the temperature function.

SOLUTION

(a)	 �The temperature of the room is Ts  70F, and the initial temperature  
difference is

D0  200  70  130°F

	 	� So by Newton’s Law of Cooling, the temperature after t minutes is modeled by 
the function

T1 t 2  70  130ekt

	 	�     We need to find the constant k associated with this cup of coffee. To do  
this, we use the fact that when t  10, the temperature is T110 2  150. So  
we have

 70  130e10k  150     Ts  D0ekt  T1 t 2
 130e10k  80     Subtract 70

 e10k  8
13     Divide by 130

 10k  ln 8
13     Take ln of each side

 k   
1

10  ln 8
13    Solve for k

 k < 0.04855     Calculator

	 	 Substituting this value of k into the expression for T1 t 2 , we get

T1 t 2  70  130e0.04855t

(b)	 We use the function that we found in part (a) with t  15.

T115 2  70  130e0.048551152 < 133°F
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Radioactive Waste
Harmful radioactive isotopes are pro-
duced whenever a nuclear reaction 
occurs, whether as the result of an atomic 
bomb test, a nuclear accident such as the 
one at Fukushima Daiichi in 2011, or the 
uneventful production of electricity at a 
nuclear power plant.

One radioactive material that is pro-
duced in atomic bombs is the isotope 
strontium-90 1 90Sr2, with a half-life of  
28 years. This is deposited like calcium in 
human bone tissue, where it can cause 
leukemia and other cancers. However, in 
the decades since atmospheric testing of 
nuclear weapons was halted, 90Sr levels in 
the environment have fallen to a level that 
no longer poses a threat to health.

Nuclear power plants produce 
radioactive plutonium-239 1239Pu2, which 
has a half-life of 24,360 years. Because of 
its long half-life, 239Pu could pose a threat 
to the environment for thousands of years. 
So great care must be taken to dispose of 
it properly. The difficulty of ensuring the 
safety of the disposed radioactive waste is 
one reason that nuclear power plants 
remain controversial.
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378  CHAPTER 4  ■  Exponential and Logarithmic Functions

(c)	 �We use the function that we found in part (a) with T1 t 2  100 and solve the 
resulting exponential equation for t.

 70  130e0.04855t  100     Ts  D0ekt  T1 t 2
 130e0.04855t  30     Subtract 70

 e0.04855t  3
13     Divide by 130

 0.04855t  ln 3
13     Take ln of each side

 t 
ln 3

13

0.04855
    Solve for t

 t < 30.2     Calculator

	 	 The coffee will have cooled to 100F after about half an hour.

(d)	 �The graph of the temperature function is sketched in Figure 7. Notice that the line  
t  70 is a horizontal asymptote. (Why?)

Now Try Exercise 25	 ■

T=70+130e_0.04855t

70

0 10 20 30 40

200

T=70

t (min)

T (˚F)

Figure 7  Temperature of coffee  
after t minutes

applications
1–16  ■  Population Growth    These exercises use the population 
growth model.

	 1.	 Bacteria Culture    A certain culture of the bacterium Strepto-
coccus A initially has 10 bacteria and is observed to double 
every 1.5 hours.

(a)	� Find an exponential model n1 t 2  n0 2t/a for the number 
of bacteria in the culture after t hours.

(b)	 Estimate the number of bacteria after 35 hours.

(c)	 After how many hours will the bacteria count reach 
10,000?
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Streptococcus A  
112,000  magnification 2

	 2.	 Bacteria Culture    A certain culture of the bacterium Rhodo-
bacter sphaeroides initially has 25 bacteria and is observed to 
double every 5 hours.

(a)	� Find an exponential model n1 t 2  n0 2t/a for the number 
of bacteria in the culture after t hours.

(b)	 Estimate the number of bacteria after 18 hours.

(c)	� After how many hours will the bacteria count reach  
1 million?

	 3.	 Squirrel Population    A grey squirrel population was intro-
duced in a certain county of Great Britain 30 years ago.  
Biologists observe that the population doubles every 6 years, 
and now the population is 100,000.

(a)	 What was the initial size of the squirrel population?

(b)	 Estimate the squirrel population 10 years from now.

(c)	 Sketch a graph of the squirrel population.

	 4.	 Bird Population    A certain species of bird was introduced in 
a certain county 25 years ago.  Biologists observe that the 
population doubles every 10 years, and now the population is 
13,000.

(a)	 What was the initial size of the bird population?

(b)	 Estimate the bird population 5 years from now.

(c)	 Sketch a graph of the bird population.

	 5.	 Fox Population    The fox population in a certain region has a 
relative growth rate of 8% per year. It is estimated that the 
population in 2013 was 18,000.

(a)	� Find a function n1 t 2  n0 ert that models the population  
t years after 2013.

(b)	� Use the function from part (a) to estimate the fox popula-
tion in the year 2021.

(c)	� After how many years will the fox population reach 
25,000?

(d)	� Sketch a graph of the fox population function for the 
years 2013–2021.

4.6  Exercises
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SECTION 4.6  ■  Modeling with Exponential Functions  379

	 6.	 Fish Population    The population of a certain species of fish 
has a relative growth rate of 1.2% per year. It is estimated 
that the population in 2010 was 12 million. 

(a)	� Find an exponential model n1 t 2  n0 ert for the popula-
tion t years after 2010.

(b)	 Estimate the fish population in the year 2015.

(c)	� After how many years will the fish population reach  
14 million?

(d)	 Sketch a graph of the fish population.

	 7.	 Population of a Country    The population of a country has a 
relative growth rate of 3% per year. The government is trying 
to reduce the growth rate to 2%. The population in 2011 was 
approximately 110 million. Find the projected population for 
the year 2036 for the following conditions.

(a)	 The relative growth rate remains at 3% per year.

(b)	 The relative growth rate is reduced to 2% per year.

	 8.	 Bacteria Culture    It is observed that a certain bacteria culture 
has a relative growth rate of 12% per hour, but in the presence 
of an antibiotic the relative growth rate is reduced to 5% per 
hour.  The initial number of bacteria in the culture is 22. Find 
the projected population after 24 hours for the following 
conditions.

(a)	� No antibiotic is present, so the relative growth rate  
is 12%.

(b)	� An antibiotic is present in the culture, so the relative 
growth rate is reduced to 5%.

	 9.	 Population of a City    The population of a certain city was 
112,000 in 2014, and the observed doubling time for the pop-
ulation is 18 years. 

(a)	� Find an exponential model n1 t 2  n0 2t/a for the popula-
tion t years after 2014.

(b)	� Find an exponential model n1 t 2  n0 ert for the popula-
tion t years after 2014.

(c)	 Sketch a graph of the population at time t.

(d)	 Estimate how long it takes the population to reach 
500,000.

	10.	 Bat Population    The bat population in a certain Midwestern 
county was 350,000 in 2012, and the observed doubling time 
for the population is 25 years. 

(a)	� Find an exponential model n1 t 2  n0 2t/a for the popula-
tion t years after 2012.

(b)	� Find an exponential model n1 t 2  n0 ert for the popula-
tion t years after 2012.

(c)	 Sketch a graph of the population at time t.

(d)	 Estimate how long it takes the population to reach  
2 million.

	11.	 Deer Population    The graph shows the deer population in a 
Pennsylvania county between 2010 and 2014. Assume that 
the population grows exponentially.

(a)	 What was the deer population in 2010?

(b)	� Find a function that models the deer population t years 
after 2010.

(c)	 What is the projected deer population in 2018?

(d)	 Estimate how long it takes the population to reach 
100,000.

Deer
population

0 1 2 43

10,000

t

n(t)

20,000

30,000
(4, 31,000)

Years since 2010

	12.	 Frog Population    Some bullfrogs were introduced into a small 
pond.  The graph shows the bullfrog population for the next few 
years.  Assume that the population grows exponentially.

(a)	 What was the initial bullfrog population?

(b)	� Find a function that models the bullfrog population  
t years since the bullfrogs were put into the pond.

(c)	 What is the projected bullfrog population after  
15 years?

(d)	 Estimate how long it takes the population to reach 
75,000.

400
500

300
200
100

2 3 40 t

700

(2, 225)

600
Frog

population

n

51 6

13.	 Bacteria Culture    A culture starts with 8600 bacteria. After  
1 hour the count is 10,000.

(a)	� Find a function that models the number of bacteria n1 t 2   
after t hours.

(b)	 Find the number of bacteria after 2 hours.

(c)	� After how many hours will the number of bacteria 
double?

	14.	 Bacteria Culture    The count in a culture of bacteria was 400 
after 2 hours and 25,600 after 6 hours.

(a)	� What is the relative rate of growth of the bacteria popula-
tion? Express your answer as a percentage.

(b)	 What was the initial size of the culture?

(c)	� Find a function that models the number of bacteria n1 t 2  
after t hours.

(d)	 Find the number of bacteria after 4.5 hours.

(e)	� After how many hours will the number of bacteria reach 
50,000?
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380  CHAPTER 4  ■  Exponential and Logarithmic Functions

4.7  Logarithmic Scales
■  The pH Scale  ■  The Richter Scale  ■  The Decibel Scale

When a physical quantity varies over a very large range, it is often convenient to take 
its logarithm in order to work with more manageable numbers. On a logarithmic scale, 
numbers are represented by their logarithms. For example, the table in the margin gives 
the weights W of some animals (in kilograms) and their logarithms (log W ).

The weights (W) vary enormously, but on a logarithmic scale, the weights are rep-
resented by more manageable numbers (log W ). Figure 1 shows that it is difficult to 
compare the weights W graphically but easy to compare them on a logarithmic scale. 

Figure 1  Weight graphed on the real 
line (top) and on a logarithmic scale 
(bottom)
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We discuss three commonly used logarithmic scales:  the pH scale, which measures 
acidity; the Richter scale, which measures the intensity of earthquakes; and the decibel 
scale, which measures the loudness of sounds. Other quantities that are measured on 
logarithmic scales are light intensity, information capacity, and radiation.

■  The pH Scale
Chemists measured the acidity of a solution by giving its hydrogen ion concentration until 
Søren Peter Lauritz Sørensen, in 1909, proposed a more convenient measure. He defined

pH  log 3H 4

where 3H 4  is the concentration of hydrogen ions measured in moles per liter (M). He 
did this to avoid very small numbers and negative exponents. For instance,

if        3H 4  104 M,        then        pH  log101104 2  14 2  4

Solutions with a pH of 7 are defined as neutral, those with pH  7 are acidic, and 
those with pH  7 are basic. Notice that when the pH increases by one unit, 3H 4  
decreases by a factor of 10.

Example 1  ■  pH Scale and Hydrogen Ion Concentration
(a)	 �The hydrogen ion concentration of a sample of human blood was measured to be 
3H 4  3.16  108 M. Find the pH, and classify the blood as acidic or basic.

(b)	 �The most acidic rainfall ever measured occurred in Scotland in 1974; its pH was 
2.4. Find the hydrogen ion concentration.

	15.	 Population of California    The population of California was 
29.76 million in 1990 and 33.87 million in 2000. Assume 
that the population grows exponentially.

(a)	� Find a function that models the population t years after 
1990.

(b)	 Find the time required for the population to double.

(c)	� Use the function from part (a) to predict the population 
of California in the year 2010. Look up California’s 
actual population in 2010, and compare.

	16.	 World Population    The population of the world was  
7.1 billion in 2013, and the observed relative growth rate was 
1.1% per year.

(a)	 Estimate how long it takes the population to double.

(b)	 Estimate how long it takes the population to triple.

17–24  ■  Radioactive Decay    These exercises use the radioactive 
decay model.

	17.	 Radioactive Radium    The half-life of radium-226 is 1600 
years. Suppose we have a 22-mg sample.

(a)	� Find a function m1 t 2  m0 2t/h
 that models the mass 

remaining after t years.

(b)	� Find a function m1 t 2  m0 ert that models the mass 
remaining after t years.

(c)	 How much of the sample will remain after 4000 years?

(d)	� After how many years will only 18 mg of the sample  
remain?

18.	 Radioactive Cesium    The half-life of cesium-137 is  
30 years. Suppose we have a 10-g sample.

(a)	� Find a function m1 t 2  m0 2t/h
 that models the mass 

remaining after t years.

(b)	� Find a function m1 t 2  m0 ert that models the mass 
remaining after t years.

(c)	 How much of the sample will remain after 80 years?

(d)	 After how many years will only 2 g of the sample 
remain?

	19.	 Radioactive Strontium    The half-life of strontium-90 is  
28 years. How long will it take a 50-mg sample to decay to a 
mass of 32 mg?

	20.	 Radioactive Radium    Radium-221 has a half-life of 30 s. 
How long will it take for 95% of a sample to decay?

	21.	 Finding Half-Life    If 250 mg of a radioactive element decays 
to 200 mg in 48 hours, find the half-life of the element.

	22.	 Radioactive Radon    After 3 days a sample of radon-222 has 
decayed to 58% of its original amount.

(a)	 What is the half-life of radon-222?

(b)	� How long will it take the sample to decay to 20% of its 
original amount?

	23.	 Carbon-14 Dating    A wooden artifact from an ancient  
tomb contains 65% of the carbon-14 that is present in living 
trees. How long ago was the artifact made? (The half-life of 
carbon-14 is 5730 years.)

	24.	 Carbon-14 Dating    The burial cloth of an Egyptian mummy 
is estimated to contain 59% of the carbon-14 it contained 
originally. How long ago was the mummy buried? (The half-
life of carbon-14 is 5730 years.)

25–28  ■  Law of Cooling    These exercises use Newton’s Law of 
Cooling.

	25.	 Cooling Soup    A hot bowl of soup is served at a dinner 
party. It starts to cool according to Newton’s Law of Cooling, 
so its temperature at time t is given by

			   T1 t 2  65  145e0.05t

		  where t is measured in minutes and T is measured in F.

(a)	 What is the initial temperature of the soup?

(b)	 What is the temperature after 10 min?

(c)	 After how long will the temperature be 100F?

	26.	 Time of Death    Newton’s Law of Cooling is used in homicide 
investigations to determine the time of death. The normal 
body temperature is 98.6 F. Immediately following death, the 
body begins to cool. It has been determined experimentally 
that the constant in Newton’s Law of Cooling is approxi-
mately k  0.1947, assuming that time is measured in hours. 
Suppose that the temperature of the surroundings is 60F.

(a)	� Find a function T 1 t 2  that models the temperature t hours 
after death.

(b)	� If the temperature of the body is now 72F, how long ago 
was the time of death?

	27.	 Cooling Turkey    A roasted turkey is taken from an oven 
when its temperature has reached 185F and is placed on a 
table in a room where the temperature is 75F.

(a)	� If the temperature of the turkey is 150F after half an 
hour, what is its temperature after 45 min?

(b)	 After how many hours will the turkey cool to 100F?

	28.	 Boiling Water    A kettle full of water is brought to a boil in a 
room with temperature 20C. After 15 min the temperature of 
the water has decreased from 100C to 75C. Find the tem-
perature after another 10 min. Illustrate by graphing the tem-
perature function.
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4.7  Logarithmic Scales
■  The pH Scale  ■  The Richter Scale  ■  The Decibel Scale

When a physical quantity varies over a very large range, it is often convenient to take 
its logarithm in order to work with more manageable numbers. On a logarithmic scale, 
numbers are represented by their logarithms. For example, the table in the margin gives 
the weights W of some animals (in kilograms) and their logarithms (log W ).

The weights (W ) vary enormously, but on a logarithmic scale, the weights are rep-
resented by more manageable numbers (log W ). Figure 1 shows that it is difficult to 
compare the weights W graphically but easy to compare them on a logarithmic scale. 

Figure 1  Weight graphed on the real 
line (top) and on a logarithmic scale 
(bottom)
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We discuss three commonly used logarithmic scales:  the pH scale, which measures 
acidity; the Richter scale, which measures the intensity of earthquakes; and the decibel 
scale, which measures the loudness of sounds. Other quantities that are measured on 
logarithmic scales are light intensity, information capacity, and radiation.

■  The pH Scale
Chemists measured the acidity of a solution by giving its hydrogen ion concentration until 
Søren Peter Lauritz Sørensen, in 1909, proposed a more convenient measure. He defined

pH  log 3H 4

where 3H 4  is the concentration of hydrogen ions measured in moles per liter (M). He 
did this to avoid very small numbers and negative exponents. For instance,

if        3H 4  104 M,        then        pH  log101104 2  14 2  4

Solutions with a pH of 7 are defined as neutral, those with pH  7 are acidic, and 
those with pH  7 are basic. Notice that when the pH increases by one unit, 3H 4  
decreases by a factor of 10.

Example 1  ■  pH Scale and Hydrogen Ion Concentration
(a)	 �The hydrogen ion concentration of a sample of human blood was measured to be 
3H 4  3.16  108 M. Find the pH, and classify the blood as acidic or basic.

(b)	 �The most acidic rainfall ever measured occurred in Scotland in 1974; its pH was 
2.4. Find the hydrogen ion concentration.

Animal W (kg) log W

Ant 0.000003 5.5
Elephant 4000 3.6
Whale 170,000 5.2

pH for Some Common  
Substances
Substance	 pH

Milk of magnesia	 10.5
Seawater	 8.0–8.4
Human blood	 7.3–7.5
Crackers	 7.0–8.5
Hominy	 6.9–7.9
Cow’s milk	 6.4–6.8
Spinach	 5.1–5.7
Tomatoes	 4.1–4.4
Oranges	 3.0–4.0
Apples	 2.9–3.3
Limes	 1.3–2.0
Battery acid	 1.0
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382  CHAPTER 4  ■  Exponential and Logarithmic Functions

SOLUTION

(a)	 A calculator gives

pH  log 3H 4  log13.16  108 2 < 7.5

	 	 Since this is greater than 7, the blood is basic.

(b)	 �To find the hydrogen ion concentration, we need to solve for 3H 4  in the loga-
rithmic equation

log 3H 4  pH

	 	 So we write it in exponential form:

3H 4  10pH

	 	 In this case pH  2.4, so

3H 4  102.4 < 4.0  103 M

Now Try Exercises 1 and 3	 ■

■  The Richter Scale
In 1935 the American geologist Charles Richter (1900–1984) defined the magnitude M 
of an earthquake to be

M  log 
I

S

where I is the intensity of the earthquake (measured by the amplitude of a seismograph 
reading taken 100 km from the epicenter of the earthquake) and S is the intensity of a 
“standard” earthquake (whose amplitude is 1 micron  104 cm). (In practice, seismo-
graph stations may not be exactly 100 km from the epicenter, so appropriate adjust-
ments are made in calculating the magnitude of an earthquake.) The magnitude of a 
standard earthquake is

M  log 
S

S
 log 1  0

Richter studied many earthquakes that occurred between 1900 and 1950. The largest 
had magnitude 8.9 on the Richter scale, and the smallest had magnitude 0. This corre-
sponds to a ratio of intensities of 800,000,000, so the Richter scale provides more 

Largest Earthquakes
Location	D ate	 Magnitude

Chile	 1960	 9.5
Alaska	 1964	 9.2
Japan	 2011	 9.1
Sumatra	 2004	 9.1
Kamchatka	 1952	 9.0
Chile	 2010	 8.8
Ecuador	 1906	 8.8
Alaska	 1965	 8.7
Alaska	 1957	 8.6
Sumatra	 2005	 8.6
Sumatra	 2012	 8.6
Tibet	 1950	 8.6
Indonesia	 1938	 8.5
Kamchatka	 1923	 8.5

Source: U.S. Geological Society

Discovery Project

The Even-Tempered Clavier

Poets, writers, philosophers, and even politicians have extolled the virtues of 
music—its beauty and its power to communicate emotion. But at the heart of 
music is a logarithmic scale. The tones that we are familiar with from our 
everyday listening can all be reproduced by the keys of a piano. The keys of a 
piano, in turn, are “evenly tempered” using a logarithmic scale. In this project 
we explore how exponential and logarithmic functions are used in properly tun-
ing a piano. You can find the project at www.stewartmath.com.Ro
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SECTION 4.7  ■  Logarithmic Scales  383

manageable numbers to work with. For instance, an earthquake of magnitude 6 is ten 
times stronger than an earthquake of magnitude 5.

Example 2  ■  Magnitude and Intensity
(a)	 �Find the magnitude of an earthquake that has an intensity of 3.75 (that is, the 

amplitude of the seismograph reading is 3.75 cm).

(b)	 �An earthquake was measured to have a magnitude of 5.1 on the Richter scale. 
Find the intensity of the earthquake.

SOLUTION

(a)	 From the definition of magnitude we see that

M  log 
I

S
 log 

3.75

104  log 37500 < 4.6

	 	 Thus the magnitude is 4.6 on the Richter scale.

(b)	 To find the intensity, we need to solve for I in the logarithmic equation

M  log 
I

S
 

	 	 So we write it in exponential form:

10M 
I

S

	 	 In this case S  104 and M  5.1, so

 105.1 
I

104         M  5.1, S  104

 1104 2 1105.1 2  I         Multiply by 104

 I  101.1 < 12.6        Add exponents

	 	 Thus the intensity of the earthquake is about 12.6, which means that the ampli-
tude of the seismograph reading is about 12.6 cm.

Now Try Exercise 9	 ■

Example 3  ■  Magnitude of Earthquakes
The 1906 earthquake in San Francisco had an estimated magnitude of 8.3 on the 
Richter scale. In the same year a powerful earthquake occurred on the Colombia-
Ecuador border that was four times as intense. What was the magnitude of the 
Colombia-Ecuador earthquake on the Richter scale?

SOLUTION    If I is the intensity of the San Francisco earthquake, then from the 
definition of magnitude we have

M  log 
I

S
 8.3

The intensity of the Colombia-Ecuador earthquake was 4I, so its magnitude was

M  log 
4I

S
 log 4  log 

I

S
 log 4  8.3 < 8.9

Now Try Exercise 11	 ■

There are several other logarithmic 
scales used to calculate the magnitude 
of earthquakes. For instance, the U.S. 
Geological Survey uses the moment 
magnitude scale.
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384  CHAPTER 4  ■  Exponential and Logarithmic Functions

Example 4  ■  Intensity of Earthquakes
The 1989 Loma Prieta earthquake that shook San Francisco had a magnitude of 7.1 
on the Richter scale. How many times more intense was the 1906 earthquake (see  
Example 3) than the 1989 event?

SOLUTION    If I1 and I2 are the intensities of the 1906 and 1989 earthquakes, then we 
are required to find I1/I2. To relate this to the definition of magnitude, we divide the 
numerator and denominator by S.

 log 
I1

I2
 log 

I1/S

I2/S
    Divide numerator and denominator by S

  log 
I1

S
 log 

I2

S
    Law 2 of logarithms

  8.3  7.1  1.2    Definition of earthquake magnitude

Therefore

I1

I2
 10log1I1/I22  101.2 < 16

The 1906 earthquake was about 16 times as intense as the 1989 earthquake.

Now Try Exercise 13	 ■

■  The Decibel Scale
The ear is sensitive to an extremely wide range of sound intensities. We take as  
a reference intensity I0  1012 W/m2 (watts per square meter) at a frequency of  
1000 hertz, which measures a sound that is just barely audible (the threshold of 
hearing). The psychological sensation of loudness varies with the logarithm of the 
intensity (the Weber-Fechner Law), so the decibel level B, measured in decibels (dB), 
is defined as

B  10 log 
I

I0

The decibel level of the barely audible reference sound is

B  10 log 
I0

I0
 10 log 1  0 dB

Example 5  ■  Decibel Level and Intensity
(a)	 �Find the decibel level of a jet engine at takeoff if the intensity was measured at 

100 W/m2.

(b)	 �Find the intensity level of a motorcycle engine at full throttle if the decibel level 
was measured at 90 dB.

SOLUTION

(a)	 From the definition of decibel level we see that

B  10 log 
I

I0
 10 log 

102

1012  10 log 1014  140 dB

	 	 Thus the decibel level is 140 dB.
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SECTION 4.7  ■  Logarithmic Scales  385

(b)	 To find the intensity, we need to solve for I in the logarithmic equation

 B  10 log 
I

I0
        Definition of decibel level

 
B

10
 log I  log 1012        Divide by 10, I0  1012

 
B

10
 log I  12         Definition of logarithm

B

10
 12  log I         Subtract 12

 log I 
90

10
 12  3         B  90

 I  103         Exponential form

	 	 Thus the intensity is 103 W/m2.

Now Try Exercises 15 and 17	 ■

The table in the margin lists decibel levels for some common sounds ranging from 
the threshold of human hearing to the jet takeoff of Example 5. The threshold of pain 
is about 120 dB.

The decibel levels of sounds that we 
can hear vary from very loud to very soft. 
Here are some examples of the decibel 
levels of commonly heard sounds.

Source of sound	 B (dB)

Jet takeoff	 140
Jackhammer	 130
Rock concert	 120
Subway	 100
Heavy traffic	 80
Ordinary traffic	 70
Normal conversation	 50
Whisper	 30
Rustling leaves	 10–20
Threshold of hearing	 0

applications
	 1.	 Finding pH    The hydrogen ion concentration of a sample of 

each substance is given. Calculate the pH of the substance.

(a)	 Lemon juice: 3H 4  5.0  103 M

(b)	 Tomato juice: 3H 4  3.2  104 M

(c)	 Seawater: 3H 4  5.0  109 M

	 2.	 Finding pH    An unknown substance has a hydrogen ion con-
centration of 3H 4  3.1  108 M. Find the pH and clas-
sify the substance as acidic or basic.

	 3.	 Ion Concentration    The pH reading of a sample of each sub-
stance is given. Calculate the hydrogen ion concentration of 
the substance.

(a)	 Vinegar: pH  3.0	 (b)	 Milk: pH  6.5

	 4.	 Ion Concentration    The pH reading of a glass of liquid is 
given. Find the hydrogen ion concentration of the liquid.

(a)	 Beer: pH  4.6	 (b)	 Water: pH  7.3

	 5.	 Finding pH    The hydrogen ion concentrations in cheeses 
range from 4.0  107 M to 1.6  105 M. Find the corre-
sponding range of pH readings.

	 6.	 Ion Concentration in Wine    The pH readings for wines vary 
from 2.8 to 3.8. Find the corresponding range of hydrogen 
ion concentrations.

	 7.	 pH of Wine    If the pH of a wine is too high, say, 4.0 or 
above, the wine becomes unstable and has a flat taste.

(a)	 A certain California red wine has a pH of 3.2, and a  
certain Italian white wine has a pH of 2.9. Find the  
corresponding hydrogen ion concentrations of the two 
wines.

(b)	 Which wine has the lower hydrogen ion concentration?

	 8.	 pH of Saliva    The pH of saliva is normally in the range of 
6.4 to 7.0. However, when a person is ill, the person’s saliva 
becomes more acidic.

(a)	 When Marco is sick, he tests the pH of his saliva and 
finds that it is 5.5. What is the hydrogen ion concentra-
tion of his saliva?

(b)	 Will the hydrogen ion concentration in Marco’s saliva 
increase or decrease as he gets better?

(c)	 After Marco recovers, he tests the pH of his saliva, and it 
is 6.5. Was the saliva more acidic or less acidic when he 
was sick?

	 9.	 Earthquake Magnitude and Intensity 
(a)	 Find the magnitude of an earthquake that has an intensity 

that is 31.25 (that is, the amplitude of the seismograph 
reading is 31.25 cm).

(b)	 An earthquake was measured to have a magnitude of  
4.8 on the Richter scale. Find the intensity of the 
earthquake.

4.7  Exercises
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386  CHAPTER 4  ■  Exponential and Logarithmic Functions

10.	 Earthquake Magnitude and Intensity 
(a)	 Find the magnitude of an earthquake that has an intensity 

that is 72.1 (that is, the amplitude of the seismograph 
reading is 72.1 cm).

(b)	 An earthquake was measured to have a magnitude of 5.8 
on the Richter scale. Find the intensity of the earthquake.

	11.	 Earthquake Magnitudes    If one earthquake is 20 times as 
intense as another, how much larger is its magnitude on the 
Richter scale?

	12.	 Earthquake Magnitudes    The 1906 earthquake in San Fran-
cisco had a magnitude of 8.3 on the Richter scale. At the 
same time in Japan an earthquake with magnitude 4.9 caused 
only minor damage. How many times more intense was the 
San Francisco earthquake than the Japan earthquake? 

	13.	 Earthquake Magnitudes    The Japan earthquake of 2011 had 
a magnitude of 9.1 on the Richter scale. How many times 
more intense was this than the 1906 San Francisco earth-
quake? (See Exercise 12.)

	14.	 Earthquake Magnitudes    The Northridge, California, earth-
quake of 1994 had a magnitude of 6.8 on the Richter scale. A 
year later, a 7.2-magnitude earthquake struck Kobe, Japan. 
How many times more intense was the Kobe earthquake than 
the Northridge earthquake?

	15.	 Traffic Noise    The intensity of the sound of traffic at a busy 
intersection was measured at 2.0  105 W/m2. Find the 
decibel level.

16.	 Leaf Blower    The intensity of the sound from a certain leaf 
blower is measured at 3.2  102 W/m2. Find the decibel level.

	17.	 Hair Dryer    The decibel level of the sound from a certain hair 
dryer is measured at 70 dB. Find the intensity of the sound.

18.	 Subway Noise    The decibel level of the sound of a subway 
train was measured at 98 dB. Find the intensity in watts per 
square meter (W/m2).

19.	 Hearing Loss from MP3 Players    Recent research has shown 
that the use of earbud-style headphones packaged with MP3 
players can cause permanent hearing loss.

(a)	 The intensity of the sound from the speakers of a  
certain MP3 player (without earbuds) is measured at 
3.1  105 W/m2. Find the decibel level.

(b)	 If earbuds are used with the MP3 player in part (a), the 
decibel level is 95 dB. Find the intensity. 

(c)	 Find the ratio of the intensity of the sound from the MP3 
player with earbuds to that of the sound without earbuds.

20.	 Comparing Decibel Levels    The noise from a power mower 
was measured at 106 dB. The noise level at a rock concert 
was measured at 120 dB. Find the ratio of the intensity of the 
rock music to that of the power mower.

DiSCUSS  ■ DI SCOVER  ■  PROVE  ■  WRITE
	21.	 PROVE:  Inverse Square Law for Sound    A law of physics 

states that the intensity of sound is inversely proportional to 
the square of the distance d from the source: I  k/d 2.

(a)	 Use this model and the equation

B  10 log 
I

I0

	� (described in this section) to show that the decibel levels 
B1 and B2 at distances d1 and d2 from a sound source are 
related by the equation

B2  B1  20 log 
d1

d2

(b)	� The intensity level at a rock concert is 120 dB at a dis-
tance 2 m from the speakers. Find the intensity level at a 
distance of 10 m.

Exponential Functions (pp. 330–332)
The exponential function f with base a (where a  0, a ? 1) is 
defined for all real numbers x by

f 1x 2  ax

The domain of f is R, and the range of f is 10, ` 2  The graph of f 
has one of the following shapes, depending on the value of a:

Ï=a˛ for a>1 Ï=a˛ for 0<a<1

0 x

y

(0, 1)

0 x

y

(0, 1)

The Natural Exponential Function (p. 339)
The natural exponential function is the exponential function 
with base e:

f 1x 2  ex

The number e is defined to be the number that the expression 
11  1/n 2 n approaches as nS `. An approximate value for the  
irrational number e is

e < 2.7182818284590c

Compound Interest (pp. 334, 340)
If a principal P is invested in an account paying an annual interest 
rate r, compounded n times a year, then after t years the amount 
A1 t 2  in the account is

A1 t 2  P Q1 
r

n
R

nt

If the interest is compounded continuously, then the amount is

A1 t 2  Pert

■  PROPERTIES AND FORMULAS

CHAPTER 4  ■ R EVIEW
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Logarithmic Functions (pp. 344–345)
The logarithmic function loga with base a (where a  0, a ? 1)  
is defined for x  0 by

loga x  y 3 ay  x

So loga x is the exponent to which the base a must be raised to  
give y.

The domain of loga is 10, ` 2 , and the range is R. For a  1, the 
graph of the function loga has the following shape:

x

y

0 1

y=loga x, a>1

Common and Natural Logarithms (pp. 348–349)
The logarithm function with base 10 is called the common 
logarithm and is denoted log. So

log x  log10  x

The logarithm function with base e is called the natural loga-
rithm and is denoted ln. So

ln x  loge  x

Properties of Logarithms (pp. 345, 349)
1.  loga 1  0	 2.  loga a  1

3.  loga a
x  x	 4.  aloga 

x  x

Laws of Logarithms (p. 354)
Let a be a logarithm base 1a  0, a ? 1 2 , and let A, B, and C be 
any real numbers or algebraic expressions that represent real 
numbers, with A  0 and B  0. Then:

1.	 loga1AB 2  loga A  loga B

2.	 loga1A/B 2  loga 
 A  loga B

3.	 loga1AC 2  C loga A

Change of Base Formula (p. 357)

logb x 
loga x

loga b

Guidelines for Solving Exponential Equations (p. 361)
1.	 Isolate the exponential term on one side of the equation.

2.	� Take the logarithm of each side, and use the Laws of Loga-
rithms to “bring down the exponent.”

3.	 Solve for the variable.

Guidelines for Solving Logarithmic Equations (p. 364)
1.	� Isolate the logarithmic term(s) on one side of the equation, and 

use the Laws of Logarithms to combine logarithmic terms if 
necessary.

2.	 Rewrite the equation in exponential form.

3.	 Solve for the variable.

Exponential Growth Model (p. 373)
A population experiences exponential growth if it can be mod-
eled by the exponential function

n1 t 2  n0 ert

where n1 t 2  is the population at time t, n0 is the initial population 
(at time t = 0), and r is the relative growth rate (expressed as a 
proportion of the population).

Radioactive Decay Model (pp. 375–376)
If a radioactive substance with half-life h has initial mass m0, 
then at time t the mass m1 t 2  of the substance that remains is mod-
eled by the exponential function

m1 t 2  m0 ert

where r 
ln 2

h
.

Newton’s Law of Cooling (p. 377)
If an object has an initial temperature that is D0 degrees warmer 
than the surrounding temperature Ts, then at time t the tempera-
ture T1 t 2  of the object is modeled by the function

T1 t 2  Ts  D0 ekt

where the constant k  0 depends on the size and type of the object.

Logarithmic Scales (pp. 381–385)
The pH scale measures the acidity of a solution:

pH  log 3H 4
The Richter scale measures the intensity of earthquakes:

M  log  

I

S

The decibel scale measures the intensity of sound:

B  10 log  

I

I0
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388  CHAPTER 4  ■  Exponential and Logarithmic Functions

ANSWERS TO THE CONCEPT CHECK CAN BE FOUND AT THE BACK OF THE BOOK.

■ C oncept check

	 1.	 Let f be the exponential function with base a.

(a)	 Write an equation that defines f. 

(b)	 Write an equation for the exponential function f with 
base 3.

	 2.	 Let f be the exponential function f 1x 2  ax, where a  0.

(a)	 What is the domain of f?

(b)	 What is the range of f?

(c)	 Sketch graphs of f for the following cases.

	 (i)  a  1    (ii)  0  a  1

	 3.	 If x is large, which function grows faster, f 1x 2  2x or 
g1x 2  x2?

	 4.	 (a)	 How is the number e defined?

(b)	 Give an approximate value of e, correct to four decimal 
places.

(c)	 What is the natural exponential function?

	 5.	 (a)	 How is loga x defined?

(b)	 Find log3 9.

(c)	 What is the natural logarithm?

(d)	 What is the common logarithm?

(e)	 Write the exponential form of the equation  
log7 49  2.

	 6.	 Let f be the logarithmic function f 1x 2  loga x.

(a)	 What is the domain of f?

(b)	 What is the range of f?

(c)	 Sketch a graph of the logarithmic function for the case 
that a  1.

	 7.	 State the three Laws of Logarithms.

	 8.	 (a)	 State the Change of Base Formula. 

(b)	 Find log7 30.

	 9.	 (a)	 What is an exponential equation?

(b)	 How do you solve an exponential equation?

(c)	 Solve for x: 2x  19

	10.	 (a)	 What is a logarithmic equation?

(b)	 How do you solve a logarithmic equation?

(c)	 Solve for x: 4 log3 x  7

	11.	 Suppose that an amount P is invested at an interest rate r and 
A1 t 2  is the amount of the investment after t years. Write a 
formula for A1 t 2  in the following cases.

(a)	 Interest is compounded n times per year.

(b)	 Interest is compounded continuously.

	12.	 Suppose that the initial size of a population is n0 and the 
population grows exponentially. Let n1 t 2  be the size of the 
population at time t. 

(a)	 Write a formula for n1 t 2  in terms of the doubling time a.

(b)	 Write a formula for n1 t 2  in terms of the relative growth 
rate r. 

	13.	 Suppose that the initial mass of a radioactive substance is m0 
and the half-life of the substance is h. Let m1 t 2  be the mass 
remaining at time t. 

(a)	 What is meant by the half-life h?

(b)	 Write a formula for m1 t 2  in terms of the half-life h.

(c)	 Write a formula for the relative decay rate r in terms of 
the half-life h.

(d)	 Write a formula for m1 t 2  in terms of the relative decay 
rate r. 

	14.	 Suppose that the initial temperature difference between an 
object and its surroundings is D0 and the surroundings have 
temperature Ts. Let T1 t 2  be the temperature at time t. State 
Newton’s Law of Cooling for T1 t 2 .

	15.	 What is a logarithmic scale? If we use a logarithmic scale 
with base 10, what do the following numbers correspond to 
on the logarithmic scale? 

(i)  100    (ii)  100,000    (iii)  0.0001

	16.	 (a)	 What does the pH scale measure?

(b)	 Define the pH of a substance with hydrogen ion concen-
tration of 3H4.

	17.	 (a)	 What does the Richter scale measure?

(b)	 Define the magnitude M of an earthquake in terms of the 
intensity I of the earthquake and the intensity S of a stan-
dard earthquake.  

	18.	 (a)	 What does the decibel scale measure?

(b)	 Define the decibel level B of a sound in terms of the 
intensity I of the sound and the intensity I0 of a barely 
audible sound. 

■ e xercises

1–4  ■  Evaluating Exponential Functions    Use a calculator to 
find the indicated values of the exponential function, rounded to 
three decimal places.

	 1.	 f 1x 2  5x; f 11.5 2 , f A!2 B, f 12.5 2
	 2.	 f 1x 2  3 # 2x; f 12.2 2 , f A!7 B, f 15.5 2
	 3.	 g1x 2  4e x2; g10.7 2 , g11 2 , g1p 2
	 4.	 g1x 2  7

4 e x1; g12 2 , gA!3 B, g13.6 2

5–16  ■  Graphing Exponential and Logarithmic Functions     
Sketch the graph of the function. State the domain, range, and 
asymptote.

	  5.	 f 1x 2  3x2	   6.	 f 1x 2  2x1

	 7.	 g1x 2  3  2x	   8.	 g1x 2  5x  5

	 9.	 F1x 2  ex1  1	 10.	 G1x 2  e x1  2
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	11.	 f 1x 2  log31x  1 2 	 12.	 g1x 2  log1x 2
	13.	 f 1x 2  2  log2 x	 14.	 f 1x 2  3  log51x  4 2
	15.	 g1x 2  2 ln  x	 16.	 g1x 2  ln1x2 2

17–20  ■  Domain    Find the domain of the function.

	17.	 f 1x 2  10x2

 log11  2x 2 	
18.	 g1x 2  log12  x  x2 2
	19.	 h1x 2  ln1x2  4 2 	
	20.	 k1x 2  ln 0  x 0

21–24  ■  Exponential Form    Write the equation in exponential 
form.

	21.	 log2 1024  10	 22.	 log6 37  x

	23.	 log  x  y	 24.	 ln c  17

25–28  ■  Logarithmic Form    Write the equation in logarithmic 
form.

	25.	 26  64	 26.	 491/2  1
7

	27.	 10x  74	 28.	 ek  m

29–44  ■  Evaluating Logarithmic Expressions    Evaluate the 
expression without using a calculator.

	29.	 log2 128	 30.	 log8 1

	31.	 10log 45	 32.	 log 0.000001

	33.	 ln1e6 2 	 34.	 log4 8

	35.	 log3A 1
 27 
B 	 36.	 2log2 13

	37.	 log5!5	 38.	 e2 ln 7

	39.	 log 25  log 4	 40.	 log3 !243

	41.	 log2 1623	 42.	 log5 250  log5 2

	43.	 log8 6  log8 3  log8 2	 44.	 log log 10100

45–50  ■  Expanding Logarithmic Expressions    Expand the loga-
rithmic expression.

	45.	 log1AB2C3 2 	 46.	 log2 1x "x2  1 2

	47.	 ln Å
x2  1

x2  1
	 48.	 log a 4x3

y21x  1 2 5 b

	49.	 log5 a
x211  5x 2 3/2

"x3  x
b 	 50.	 ln a "3 x4  12

1x  16 2  !x  3
b

51–56  ■  Combining Logarithmic Expressions    Combine into a 
single logarithm.

	51.	 log 6  4 log 2

	52.	 log x  log 1x2y 2  3 log y

	53.	 3
2 log2 1x  y 2  2 log2 1x2  y2 2

	54.	 log5 2  log5 1x  1 2  1
3 log5 13x  7 2

	55.	 log1x  2 2  log1x  2 2  1
2 log1x2  4 2

	56.	 1
2 3 ln1x  4 2  5 ln1x2  4x 2 4

57–70  ■  Exponential and Logarithmic Equations    Solve the 
equation. Find the exact solution if possible; otherwise, use a cal-
culator to approximate to two decimals.

	57.	 32x7  27	 58.	 54x  1
125

	59.	 23x5  7	 60.	 1063x  18

	61.	 41x  32x5	 62.	 e3x/4  10

	63.	 x2e2x  2xe2x  8e2x	 64.	 32x  3x  6  0

65.	 log x  log1x  1 2  log 12

66.	 ln1x  2 2  ln 3  ln15x  7 2
	67.	 log211  x 2  4

68.	 ln12x  3 2  1  0

69.	 log31x  8 2  log3 x  2

	70.	 log81x  5 2  log81x  2 2  1	 

71–74  ■  Exponential Equations    Use a calculator to find the 
solution of the equation, rounded to six decimal places.

	71.	 52x/3  0.63	 72.	 23x5  7

	73.	 52x1  34x1	 74.	 e15k  10,000

75–78  ■  Local Extrema and Asymptotes    Draw a graph of the 
function and use it to determine the asymptotes and the local 
maximum and minimum values.

	75.	 y  ex/1x22	 76.	 y  10x  5x

	77.	 y  log1x3  x 2 	 78.	 y  2x2  ln x

79–80  ■  Solving Equations    Find the solutions of the equation, 
rounded to two decimal places.

	79.	 3 log  x  6  2x	 80.	 4  x2  e2x

81–82  ■  Solving Inequalities    Solve the inequality graphically.

	81.	 ln x  x  2	 82.	 ex  4x2

	83.	 Increasing and Decreasing    Use a graph of 
f 1x 2  e x  3ex  4x to find, approximately, the intervals 
on which f is increasing and on which f is decreasing.

	84.	 Equation of a Line    Find an equation of the line shown in the 
figure.

xea

y=ln x

y

0

85–88  ■  Change of Base    Use the Change of Base Formula to 
evaluate the logarithm, rounded to six decimal places.

	85.	 log4 15	 86.	 log7 A34 B
	87.	 log9 0.28	 88.	 log100 250

71759_ch04_329-400.indd   389 9/16/14   5:25 PM

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



390  CHAPTER 4  ■  Exponential and Logarithmic Functions

CHAPTER 4
	  89.  Comparing Logarithms    Which is larger, log4 258 or  

log5 620?

	  90.  �Inverse Function    Find the inverse of the function 
f 1x 2  23x

, and state its domain and range.

	  91.  �Compound Interest    If $12,000 is invested at an interest 
rate of 10% per year, find the amount of the investment at 
the end of 3 years for each compounding method.

(a)	 Semiannually	 (b)	 Monthly

(c)	 Daily	 (d)	 Continuously

	  92. � Compound Interest    A sum of $5000 is invested at an inter-
est rate of 8 1

2 % per year, compounded semiannually.

(a)	 Find the amount of the investment after 11
2  years.

(b)	 After what period of time will the investment amount 
to $7000?

(c)	� If interest were compounded continously instead of 
semiannually, how long would it take for the amount to 
grow to $7000?

	  93. � Compound Interest    A money market account pays  
5.2% annual interest, compounded daily. If $100,000 is 
invested in this account, how long will it take for the 
account to accumulate $10,000 in interest?

	  94.  �Compound Interest    A retirement savings plan pays  
4.5% interest, compounded continuously. How long will it 
take for an investment in this plan to double?

95–96  ■  APY    Determine the annual percentage yield (APY) for  
the given nominal annual interest rate and compounding  
frequency.

	  95.	 4.25%;    daily

  96.	 3.2%;    monthly

	  97.	� Cat Population    The stray-cat population in a small town 
grows exponentially. In 1999 the town had 30 stray cats, 
and the relative growth rate was 15% per year.

(a)	 ��Find a function that models the stray-cat population 
n1 t 2  after t years.

(b)	 Find the projected population after 4 years.

(c)	 Find the number of years required for the stray-cat pop-
ulation to reach 500.

	  98. � Bacterial Growth    A culture contains 10,000 bacteria ini-
tially. After 1 hour the bacteria count is 25,000.

(a)	 Find the doubling period.

(b)	 Find the number of bacteria after 3 hours.

	  99. � Radioactive Decay    Uranium-234 has a half-life of  
2.7  105 years.

(a)	 Find the amount remaining from a 10-mg sample after a 
thousand years.

(b)	 How long will it take this sample to decompose until its 
mass is 7 mg?

	100. � Radioactive Decay    A sample of bismuth-210 decayed to 
33% of its original mass after 8 days.

(a)	 Find the half-life of this element.

(b)	 �Find the mass remaining after 12 days.

	101.	� Radioactive Decay    The half-life of radium-226 is  
1590 years.

(a)	 If a sample has a mass of 150 mg, find a function that 
models the mass that remains after t years.

(b)	 Find the mass that will remain after 1000 years.

(c)	 After how many years will only 50 mg remain?

	102.  �Radioactive Decay    The half-life of palladium-100 is  
4 days. After 20 days a sample has been reduced to a mass 
of 0.375 g.

(a)	 What was the initial mass of the sample?

(b)	 �Find a function that models the mass remaining after 
t days.

(c)	 What is the mass after 3 days?

(d)	 After how many days will only 0.15 g remain?

	103.	 Bird Population    The graph shows the population of a rare 
species of bird, where t represents years since 2009 and n1 t 2  
is measured in thousands.

(a)	 �Find a function that models the bird population at time t 
in the form n1 t 2  n0 e rt.

(b)	 �What is the bird population expected to be in the year 
2020?

0 t

n(t)
4000

1 5432

1000

2000

3000
Bird

population

Years since 2009

(5, 3200)

	104. � Law of Cooling    A car engine runs at a temperature of 
190F. When the engine is turned off, it cools according to 
Newton’s Law of Cooling with constant k  0.0341, where 
the time is measured in minutes. Find the time needed for 
the engine to cool to 90F if the surrounding temperature is 
60F.

	105. � pH    The hydrogen ion concentration of fresh egg whites 
was measured as

3H 4  1.3  108 M

	 	 Find the pH, and classify the substance as acidic or basic.

	106. � pH    The pH of lime juice is 1.9. Find the hydrogen ion 
concentration.

	107. � Richter Scale    If one earthquake has magnitude 6.5 on the 
Richter scale, what is the magnitude of another quake that is 
35 times as intense?

	108. � Decibel Scale    The drilling of a jackhammer was measured 
at 132 dB. The sound of whispering was measured at 28 dB. 
Find the ratio of the intensity of the drilling to that of the 
whispering.
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	 1.	 Sketch the graph of each function, and state its domain, range, and asymptote. Show the  
x- and y-intercepts on the graph.

(a)	 f 1x 2  2x  4	 (b)	 g1x 2  log31x  3 2
	 2.	 Find the domain of the function.

(a)	 f 1 t 2  ln12t  3 2 	 (b)	 g1x 2  log1x2  1 2
	 3.	 (a)	 Write the equation 62x  25 in logarithmic form.

(b)	 Write the equation ln A  3 in exponential form.

	 4.	 Find the exact value of the expression.

(a)	 10log 36	 (b)	 ln e3	 (c)	 log3!27

(d)	 log2 80  log2 10	 (e)	 log8 4	 (f)	 log6 4  log6 9

	 5.	 Use the Laws of Logarithms to expand the expression.

(a)	 loga xy3

z2 b 	 (b)	 ln Ä
x

y 	
(c)	 log  Ä

3 x  2

x41x2  4 2
	 6.	 Use the Laws of Logarithms to combine the expression into a single logarithm.

(a)	 log a  2 log b (b)  ln1x2  25 2  ln1x  5 2  (c)  log2 3  3 log2 x  1
2 log21x  1 2

	 7.	 Find the solution of the exponential equation, rounded to two decimal places.

(a)	 34x  3100      (b)  e3x2  ex2

      (c)  5x/10  1  7      (d)  10x3  62x

	 8.	 Solve the logarithmic equation for x.

(a)	 log12x 2  3	 (b)  log1x  1 2  log 2  log15x 2
(c)	 5 ln13  x 2  4	 (d)  log21x  2 2  log21x  1 2  2

	 9.	 Use the Change of Base Formula to evaluate log12 27.

	10.	 The initial size of a culture of bacteria is 1000. After 1 hour the bacteria count is 8000.

(a)	 Find a function n1 t 2  n0 ert that models the population after t hours.

(b)	 Find the population after 1.5 hours.

(c)	 After how many hours will the number of bacteria reach 15,000?

(d)	 Sketch the graph of the population function.

	11.	 Suppose that $12,000 is invested in a savings account paying 5.6% interest per year.

(a)	� Write the formula for the amount in the account after t years if interest is compounded 
monthly.

(b)	 Find the amount in the account after 3 years if interest is compounded daily.

(c)	� How long will it take for the amount in the account to grow to $20,000 if interest is 
compounded continuously?

	12.	 The half-life of krypton-91 1 91Kr 2  is 10 s. At time t = 0 a heavy canister contains 3 g of 
this radioactive gas.

(a)	� Find a function m1 t 2  m0 2t/h that models the amount of 91Kr remaining in the  
canister after t seconds.

(b)	� Find a function m1 t 2  m0 ert that models the amount of 91Kr remaining in the  
canister after t seconds.

(c)	 How much 91Kr remains after 1 min?

(d)	� After how long will the amount of 91Kr remaining be reduced to 1 mg (1 microgram, 
or 106 g)?

	13.	 An earthquake measuring 6.4 on the Richter scale struck Japan in July 2007, causing 
extensive damage. Earlier that year, a minor earthquake measuring 3.1 on the Richter scale 
was felt in parts of Pennsylvania. How many times more intense was the Japanese earth-
quake than the Pennsylvania earthquake?

CHAPTER 4 TEST

A CUMULATIVE REVIEW TEST FOR CHAPTERS 2, 3, AND 4 CAN BE FOUND AT THE BOOK COMPANION WEBSITE: www.stewartmath.com.
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392

In a previous Focus on Modeling (page 325) we learned that the shape of a scatter plot  
helps us to choose the type of curve to use in modeling data. The first plot in Figure 1 
strongly suggests that a line be fitted through it, and the second one points to a cubic 
polynomial. For the third plot it is tempting to fit a second-degree polynomial. But what 
if an exponential curve fits better? How do we decide this? In this section we learn how 
to fit exponential and power curves to data and how to decide which type of curve fits 
the data better. We also learn that for scatter plots like those in the last two plots in 
Figure 1, the data can be modeled by logarithmic or logistic functions.

Figure 1

■  Modeling with Exponential Functions
If a scatter plot shows that the data increase rapidly, we might want to model the data 
using an exponential model, that is, a function of the form

f 1x 2  Cekx

where C and k are constants. In the first example we model world population by  
an exponential model. Recall from Section 4.6 that population tends to increase 
exponentially.

Example 1  ■ A n Exponential Model for World Population
Table 1 gives the population of the world in the 20th century.

(a)	 Draw a scatter plot, and note that a linear model is not appropriate.

(b)	 Find an exponential function that models population growth.

(c)	� Draw a graph of the function that you found together with the scatter plot. How 
well does the model fit the data?

(d)	 Use the model that you found to predict world population in the year 2020.

SOLUTION

(a)	� The scatter plot is shown in Figure 2. The plotted points do not appear to lie 
along a straight line, so a linear model is not appropriate.

Figure 2  Scatter plot of world population

2000

6500

0
1900

0
1900 2000

Fitting Exponential and Power Curves to Data	 FOCUS ON MODELING

Table 1
World population

Year 
x tc

World population 
(P in millions)

1900 1650
1910 1750
1920 1860
1930 2070
1940 2300
1950 2520
1960 3020
1970 3700
1980 4450
1990 5300
2000 6060
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   Fitting Exponential and Power Curves to Data  393

(b) � Using a graphing calculator and the ExpReg command (see Figure 3(a)), we get 
the exponential model

P1 t 2  10.0082543 2 # 11.0137186 2 t
�	� This is a model of the form y  Cbt. To convert this to the form y  Cekt, we use 

the properties of exponentials and logarithms as follows.

 1.0137186t  eln 1.0137186 t

        A 5 eln A

  et  ln  1.0137186        ln AB 5 B ln A

  e0.013625t         ln 1.0137186 ^ 0.013625

	 Thus we can write the model as

P1 t 2  0.0082543e0.013625t

(c)	� From the graph in Figure 3(b) we see that the model appears to fit the data fairly 
well. The period of relatively slow population growth is explained by the depres-
sion of the 1930s and the two world wars.

(a)

2000

6500

0
1900

(b)

Figure 3  Exponential model for world population

(d)	 The model predicts that the world population in 2020 will be

	  P12020 2  0.0082543e 10.0136252  120202

	  < 7,405,400,000 � ■

■  Modeling with Power Functions
If the scatter plot of the data we are studying resembles the graph of y  ax2, y  ax1.32, 
or some other power function, then we seek a power model, that is, a function of the form

f 1x 2  ax n

where a is a positive constant and n is any real number.
In the next example we seek a power model for some astronomical data. In astron-

omy, distance in the solar system is often measured in astronomical units. An astro-
nomical unit (AU) is the mean distance from the earth to the sun. The period of a planet 
is the time it takes the planet to make a complete revolution around the sun (measured 
in earth years). In this example we derive the remarkable relationship, first discovered 
by Johannes Kepler (see page 808), between the mean distance of a planet from the sun 
and its period.

Example 2  ■  A Power Model for Planetary Periods
Table 2 gives the mean distance d of each planet from the sun in astronomical units 
and its period T in years.
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The population of the world  
increases exponentially.
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394  Focus on Modeling

(a)	 Sketch a scatter plot. Is a linear model appropriate?

(b)	 Find a power function that models the data.

(c)	� Draw a graph of the function you found and the scatter plot on the same graph. 
How well does the model fit the data?

(d)	� Use the model that you found to calculate the period of an asteroid whose mean 
distance from the sun is 5 AU.

SOLUTION

(a)	 �The scatter plot shown in Figure 4 indicates that the plotted points do not lie 
along a straight line, so a linear model is not appropriate.

Figure 4  Scatter plot  
of planetary data 45

260

0

(b) � Using a graphing calculator and the PwrReg command (see Figure 5(a)), we get 
the power model

T  1.000396d1.49966

�	� If we round both the coefficient and the exponent to three significant figures, we 
can write the model as

T  d1.5

��	� This is the relationship discovered by Kepler (see page 808). Sir Isaac Newton  
(page 911) later used his Law of Gravity to derive this relationship theoretically, 
thereby providing strong scientific evidence that the Law of Gravity must be true.

(c)	� The graph is shown in Figure 5(b). The model appears to fit the data very well.

(a) (b)

45

260

0Figure 5  Power model for  
planetary data

(d)	 In this case d  5 AU, so our model gives

T  1.00039 # 51.49966 < 11.22

	 The period of the asteroid is about 11.2 years.� ■

■  Linearizing Data
We have used the shape of a scatter plot to decide which type of model to use: linear, 
exponential, or power. This works well if the data points lie on a straight line. But it’s 
difficult to distinguish a scatter plot that is exponential from one that requires a power 
model. So to help decide which model to use, we can linearize the data, that is, apply 

Table 2
Distances and periods of the planets

Planet d T

Mercury 0.387 0.241
Venus 0.723 0.615
Earth 1.000 1.000
Mars 1.523 1.881
Jupiter 5.203 11.861
Saturn 9.541 29.457
Uranus 19.190 84.008
Neptune 30.086 164.784
Pluto* 39.507 248.350

*Pluto is a “dwarf planet.”
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   Fitting Exponential and Power Curves to Data  395

a function that “straightens” the scatter plot. The inverse of the linearizing function is 
then an appropriate model. We now describe how to linearize data that can be modeled 
by exponential or power functions.

■   Linearizing Exponential Data
If we suspect that the data points 1x, y 2  lie on an exponential curve y  Cekx, then the 
points

1x, ln y 2
should lie on a straight line. We can see this from the following calculations.

 ln y  ln Cekx         Assume that y 5 Cekx and take ln

  ln ekx  ln C        Property of ln

  kx  ln C         Property of ln

To see that ln y is a linear function of x, let Y  ln y and A  ln C; then

Y  kx  A

We apply this technique to the world population data 1 t, P 2  to obtain the points 1 t, ln P 2  
in Table 3. The scatter plot of 1 t, ln P 2  in Figure 6, called a semi-log plot, shows that 
the linearized data lie approximately on a straight line, so an exponential model should 
be appropriate.

Figure 6  Semi-log  
plot of data in Table 3

2010

23

21
1900

■   Linearizing Power Data
If we suspect that the data points 1x,  y 2  lie on a power curve y  axn, then the points

1 ln x, ln y 2
should be on a straight line. We can see this from the following calculations.

 ln y  ln axn         Assume that y 5 axn and take ln

  ln a  ln xn         Property of ln

  ln a  n  ln x        Property of ln

To see that ln y is a linear function of ln x, let Y  ln y, X  ln x, and A  ln a; then

Y  nX  A

We apply this technique to the planetary data 1d, T 2  in Table 2 to obtain the points 
1 ln d, ln T 2  in Table 4. The scatter plot of 1 ln d, ln T 2  in Figure 7, called a log-log plot, 
shows that the data lie on a straight line, so a power model seems appropriate.

Figure 7  Log-log plot 
of data in Table 4
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6
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Table 3
World population data

t
Population P 
(in millions) ln P

1900 1650 21.224
1910 1750 21.283
1920 1860 21.344
1930 2070 21.451
1940 2300 21.556
1950 2520 21.648
1960 3020 21.829
1970 3700 22.032
1980 4450 22.216
1990 5300 22.391
2000 6060 22.525

Table 4
Log-log table

ln d ln T

0.94933 1.4230
0.32435 0.48613

0 0
0.42068 0.6318
1.6492 2.4733
2.2556 3.3829
2.9544 4.4309
3.4041 5.1046
3.6765 5.5148
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396  Focus on Modeling

■ A n Exponential or Power Model?
Suppose that a scatter plot of the data points 1x,  y 2  shows a rapid increase. Should we 
use an exponential function or a power function to model the data? To help us decide, 
we draw two scatter plots: one for the points 1x, ln y 2  and the other for the points 
1 ln x, ln y 2 . If the first scatter plot appears to lie along a line, then an exponential model 
is appropriate. If the second plot appears to lie along a line, then a power model is ap-
propriate.

Example 3  ■ A n Exponential or Power Model?
Data points 1x,  y 2  are shown in Table 5.

(a)	 Draw a scatter plot of the data.

(b)	 Draw scatter plots of 1x, ln y 2  and 1 ln x, ln y 2 .
(c)	� Is an exponential function or a power function appropriate for modeling this data?

(d)  Find an appropriate function to model the data.

SOLUTION

(a)	 The scatter plot of the data is shown in Figure 8.

Figure 8 0 11

140

(b)	 We use the values from Table 6 to graph the scatter plots in Figures 9 and 10.

Figure 9  Semi-log plot

11

6

0

Figure 10  Log-log plot

2.5

5

0

(c)	� The scatter plot of 1x, ln y 2  in Figure 9 does not appear to be linear, so an expo-
nential model is not appropriate. On the other hand, the scatter plot of 1 ln x, ln y 2  
in Figure 10 is very nearly linear, so a power model is appropriate.

(d)	� Using the PwrReg command on a graphing calculator, we find that the power 
function that best fits the data point is

y  1.85x 1.82

	 The graph of this function and the original data points are shown in Figure 11.� ■

Before graphing calculators and statistical software became common, exponential 
and power models for data were often constructed by first finding a linear model for the 
linearized data. Then the model for the actual data was found by taking exponentials. 
For instance, if we find that ln y  A ln x  B, then by taking exponentials we get the 
model y  eB # eA ln x, or y  CxA (where C  eB). Special graphing paper called “log 
paper” or “log-log paper” was used to facilitate this process.

Table 5

x y

  1     2
  2     6
  3   14
  4   22
  5   34
  6   46
  7   64
  8   80
  9 102
10 130

Figure 11

0 11

140

Table 6

x ln x ln y

  1 0 0.7
  2 0.7 1.8
  3 1.1 2.6
  4 1.4 3.1
  5 1.6 3.5
  6 1.8 3.8
  7 1.9 4.2
  8 2.1 4.4
  9 2.2 4.6
10 2.3 4.9
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   Fitting Exponential and Power Curves to Data  397

■  Modeling with Logistic Functions
A logistic growth model is a function of the form

f 1 t 2 
c

1  aebt

where a, b, and c are positive constants. Logistic functions are used to model popula-
tions where the growth is constrained by available resources. (See Exercises 27–30 of  
Section 4.2.)

Example 4  ■  Stocking a Pond with Catfish
Much of the fish that is sold in supermarkets today is raised on commercial fish farms, 
not caught in the wild. A pond on one such farm is initially stocked with 1000 catfish, 
and the fish population is then sampled at 15-week intervals to estimate its size. The 
population data are given in Table 7.

(a)	 Find an appropriate model for the data.

(b)	� Make a scatter plot of the data and graph the model that you found in part (a) on 
the scatter plot.

(c)	 How does the model predict that the fish population will change with time?

SOLUTION

(a)	� Since the catfish population is restricted by its habitat (the pond), a logistic model 
is appropriate. Using the Logistic command on a calculator (see Figure 12(a)), 
we find the following model for the catfish population P1 t 2 :

P1 t 2 
7925

1  7.7e0.052t

Figure 12

0

(a) (b)  Catfish population y = P(t)

180

9000

(b)	 The scatter plot and the logistic curve are shown in Figure 12(b).

(c)	� From the graph of P in Figure 12(b) we see that the catfish population increases 
rapidly until about t  80 weeks. Then growth slows down, and at about t  120 
weeks the population levels off and remains more or less constant at slightly  
over 7900.� ■

The behavior that is exhibited by the catfish population in Example 4 is typical of 
logistic growth. After a rapid growth phase, the population approaches a constant level 
called the carrying capacity of the environment. This occurs because as tS ` , we 
have ebt → 0 (see Section 4.2), and so

P1 t 2 
c

1  aebt h  
c

1  0
 c

Thus the carrying capacity is c.

Table 7

Week Catfish

    0 1000
  15 1500
  30 3300
  45 4400
  60 6100
  75 6900
  90 7100
105 7800
120 7900
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398  Focus on Modeling

Problems
	 1.	 �U.S. Population    The U.S. Constitution requires a census every 10 years. The census 

data for 1790–2010 are given in the table.

(a)	 Make a scatter plot of the data.

(b)	 Use a calculator to find an exponential model for the data.

(c)	 Use your model to predict the population at the 2020 census.

(d)	 Use your model to estimate the population in 1965.

Year
Population 

(in millions) Year
Population 

(in millions) Year
Population 

(in millions)

1790   3.9 1870   38.6 1950 151.3
1800   5.3 1880   50.2 1960 179.3
1810   7.2 1890   63.0 1970 203.3
1820   9.6 1900   76.2 1980 226.5
1830 12.9 1910   92.2 1990 248.7
1840 17.1 1920 106.0 2000 281.4
1850 23.2 1930 123.2 2010 308.7
1860 31.4 1940 132.2

	 2.	 A Falling Ball    In a physics experiment a lead ball is dropped from a height of 5 m. The 
students record the distance the ball has fallen every one-tenth of a second. (This can be 
done by using a camera and a strobe light.) Their data are shown in the margin.

(a)	 Make a scatter plot of the data.

(b)	 Use a calculator to find a power model.

(c)	 Use your model to predict how far a dropped ball would fall in 3 s.

	 3.	 Half-Life of Radioactive Iodine    A student is trying to determine the half-life of  
radioactive iodine-131. He measures the amount of iodine-131 in a sample solution every  
8 hours. His data are shown in the table below.

(a)	 Make a scatter plot of the data.

(b)	 Use a calculator to find an exponential model.

(c)	 Use your model to find the half-life of iodine-131.

Time xhc Amount of 131I xgc

  0 4.80
  8 4.66
16 4.51
24 4.39
32 4.29
40 4.14
48 4.04

	 4.	 The Beer-Lambert Law    As sunlight passes through the waters of lakes and oceans, the 
light is absorbed, and the deeper it penetrates, the more its intensity diminishes. The light  
intensity I at depth x is given by the Beer-Lambert Law:

I  I0 ekx

		  where I0 is the light intensity at the surface and k is a constant that depends on the murki-
ness of the water (see page 366). A biologist uses a photometer to investigate light penetra-
tion in a northern lake, obtaining the data in the table.

Time 
(s) 

Distance 
(m)

0.1 0.048
0.2 0.197
0.3 0.441
0.4 0.882
0.5 1.227
0.6 1.765
0.7 2.401
0.8 3.136
0.9 3.969
1.0 4.902

Light intensity decreases exponentially 
with depth.
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   Fitting Exponential and Power Curves to Data  399

(a)	� Use a graphing calculator to find an exponential function of the form given by the 
Beer-Lambert Law to model these data. What is the light intensity I0 at the surface on 
this day, and what is the “murkiness” constant k for this lake?    [Hint: If your calcula-
tor gives you a function of the form I  abx, convert this to the form you want using 
the identities bx  eln 1bx 2  ex ln b. See Example 1(b).]

(b)	� Make a scatter plot of the data, and graph the function that you found in part (a) on 
your scatter plot.

(c)	� If the light intensity drops below 0.15 lumen (lm), a certain species of algae can’t sur-
vive because photosynthesis is impossible. Use your model from part (a) to determine 
the depth below which there is insufficient light to support this algae.

Depth 
(ft)

Light intensity 
(lm)

Depth 
(ft)

Light intensity 
(lm)

  5 13.0 25 1.8
10   7.6 30 1.1
15   4.5 35 0.5
20   2.7 40 0.3

	 5.	 Experimenting with “Forgetting” Curves    Every one of us is all too familiar with the phe-
nomenon of forgetting. Facts that we clearly understood at the time we first learned them some
times fade from our memory by the time the final exam rolls around. Psychologists have pro-
posed several ways to model this process. One such model is Ebbinghaus’ Law of Forgetting, 
described on page 356. Other models use exponential or logarithmic functions. To develop her 
own model, a psychologist performs an experiment on a group of volunteers by asking them to 
memorize a list of 100 related words. She then tests how many of these words they can recall 
after various periods of time. The average results for the group are shown in the table.

(a)	� Use a graphing calculator to find a power function of the form y  at b that models the 
average number of words y that the volunteers remember after t hours. Then find an 
exponential function of the form y  abt to model the data.

(b)	� Make a scatter plot of the data, and graph both the functions that you found in part (a) 
on your scatter plot.

(c)	 Which of the two functions seems to provide the better model?

	 6.	 Modeling the Species-Area Relation    The table gives the areas of several caves in 
central Mexico and the number of bat species that live in each cave.*

(a)	 Find a power function that models the data.

(b)	� Draw a graph of the function you found in part (a) and a scatter plot of the data on the 
same graph. Does the model fit the data well?

(c)	� The cave called El Sapo near Puebla, Mexico, has a surface area of A  205 m2. Use 
the model to estimate the number of bat species you would expect to find in that cave.

Cave Area xm2 c

Number 
of species

La Escondida   18 1
El Escorpion   19 1
El Tigre   58 1
Mision Imposible   60 2
San Martin 128 5
El Arenal 187 4
La Ciudad 344 6
Virgen 511 7

Time Words recalled

15 min 64.3
1 h 45.1
8 h 37.3
1 day 32.8
2 days 26.9
3 days 25.6
5 days 22.9

The number of different bat species 
in a cave is related to the size  
of the cave by a power function.
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*A. K. Brunet and R. A. Medallin, “The Species-Area Relationship in Bat Assemblages of Tropical Caves.” 
Journal of Mammalogy, 82(4):1114–1122, 2001.
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400  Focus on Modeling

	 7.	 Auto Exhaust Emissions    A study by the U.S. Office of Science and Technology in 1972 es-
timated the cost of reducing automobile emissions by certain percentages. Find an exponential 
model that captures the “diminishing returns” trend of these data shown in the table below.

Reduction in 
emissions (%)

Cost per 
car ($)

50   45
55   55
60   62
65   70
70   80
75   90
80 100
85 200
90 375
95 600

	 8.	 Exponential or Power Model?    Data points 1x, y 2  are shown in the table.

(a)	 Draw a scatter plot of the data.

(b)	 Draw scatter plots of 1x, ln y 2  and 1 ln x, ln y 2 .
(c)	� Which is more appropriate for modeling this data: an exponential function or a power 

function?

(d)	 Find an appropriate function to model the data.

x 2 4 6 8 10 12 14 16

y 0.08 0.12 0.18 0.25 0.36 0.52 0.73 1.06

	 9.	 Exponential or Power Model?    Data points 1x, y 2  are shown in the table in the margin.

(a)	 Draw a scatter plot of the data.

(b)	 Draw scatter plots of 1x, ln y 2  and 1 ln x, ln y 2 .
(c)	� Which is more appropriate for modeling this data: an exponential function or a power 

function?

(d)	 Find an appropriate function to model the data.

x 10 20 30 40 50 60 70 80 90

y 29 82 151 235 330 430 546 669 797

	10.	 Logistic Population Growth    The table and scatter plot give the population of black 
flies in a closed laboratory container over an 18-day period.

(a)	 Use the Logistic command on your calculator to find a logistic model for these data.

(b)	 Use the model to estimate the time when there were 400 flies in the container.

400

300

200

100

4 6 80 t
Days

500

Number
of flies

N

102 12 14 16 18

Time 
(days) 

Number 
of flies

  0   10
  2   25
  4   66
  6 144
  8 262
10 374
12 446
16 492
18 498
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