
Functions defined by polynomial expressions� are called polynomial 
functions. The graphs of polynomial functions can have many peaks and 
valleys. This property makes them suitable models for many real-world 
situations. For example, a factory owner notices that if she increases the 
number of workers, productivity increases, but if there are too many 
workers, productivity begins to decrease. This situation is modeled by a 
polynomial function of degree 2 (a quadratic function). The growth of 
many animal species follows a predictable pattern, beginning with a period 
of rapid growth, followed by a period of slow growth and then a final 
growth spurt. This variability in growth is modeled by a polynomial of 
degree 3.

In the Focus on Modeling at the end of this chapter we explore different 
ways of using polynomial functions to model real-world situations.
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246  CHAPTER 3  ■  Polynomial and Rational Functions

3.1  Quadratic Functions and Models
■  Graphing Quadratic Functions Using the Standard Form  ■  Maximum and Minimum  
Values of Quadratic Functions  ■  Modeling with Quadratic Functions

A polynomial function is a function that is defined by a polynomial expression. So a 
polynomial function of degree n is a function of the form

P 1x 2  anxn  an1x
n1  . . .  a1x  a0  an ? 0

We have already studied polynomial functions of degree 0 and 1. These are functions of 
the form P 1x 2  a0 and P 1x 2  a1x  a0, respectively, whose graphs are lines. In this 
section we study polynomial functions of degree 2. These are called quadratic functions.

Quadratic Functions

A quadratic function is a polynomial function of degree 2. So a quadratic 
function is a function of the form

f 1x 2  ax2  bx  c  a ? 0

We see in this section how quadratic functions model many real-world phenomena. We 
begin by analyzing the graphs of quadratic functions.

■  Graphing Quadratic Functions Using the Standard Form
If we take a  1 and b  c  0 in the quadratic function f 1x 2  ax2  bx  c, we get 
the quadratic function f 1x 2  x2, whose graph is the parabola graphed in Example 1 of 
Section 2.2. In fact, the graph of any quadratic function is a parabola; it can be obtained 
from the graph of f 1x 2  x2 by the transformations given in Section 2.6.

Standard Form of a Quadratic Function

A quadratic function f 1x 2  ax2  bx  c can be expressed in the standard form

f 1x 2  a1x  h 2 2  k

by completing the square. The graph of f is a parabola with vertex 1h,  k 2 ; the 
parabola opens upward if a  0 or downward if a  0.

y

x0

Ï=a(x-h)™+k,  a>0

y

x0

Ï=a(x-h)™+k,  a<0

h

k

h

Vertex (h, k)

Vertex (h, k)

k

Example 1  ■  Standard Form of a Quadratic Function
Let f 1x 2  2x2  12x  13.

(a)	 Express f in standard form.

(b)	 Find the vertex and x- and y-intercepts of f.

(c)	 Sketch a graph of f.

(d)	 Find the domain and range of f.

Polynomial expressions are defined in 
Section 1.3.

For a geometric definition of parabolas, 
see Section 11.1.
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SECTION 3.1  ■  Quadratic Functions and Models  247

Solution

(a)	 �Since the coefficient of x2 is not 1, we must factor this coefficient from the terms 
involving x before we complete the square.

 f 1x 2  2x2  12x  13

  21x2  6x 2  13         Factor 2 from the x-terms

  21x2  6x  9 2  13  2 # 9      
Complete the square: Add 9 inside 
parentheses, subtract 2 # 9 outside

  21x  3 2 2  5         Factor and simplify

	 	 The standard form is f 1x 2  21x  3 2 2  5.

(b)	 �From the standard form of f we can see that the vertex of f is 13, 5 2 . The 
y-intercept is f 10 2  13. To find the x-intercepts, we set f 1x 2  0 and solve the 
resulting equation. We can solve a quadratic equation by any of the methods we stud-
ied in Section 1.5. In this case we solve the equation by using the Quadratic Formula.

 0  2x2  12x  13         Set f 1x 2  0

 x 
12  !144  4 # 2 # 13

4
        Solve for x using the Quadratic Formula

 x 
6  !10

2
        Simplify

	 	� Thus the x-intercepts are x  A6  !10B/2. So the intercepts are approximately 
1.42 and 4.58.

(c)	 �The standard form tells us that we get the graph of f by taking the parabola 
y  x2, shifting it to the right 3 units, stretching it vertically by a factor of 2, and 
moving it downward 5 units. We sketch a graph of f in Figure 1, including the  
x- and y-intercepts found in part (b).

(d)	 �The domain of f is the set of all real numbers 1,  2 . From the graph we see 
that the range of f is 35,  2 .

Now Try Exercise 15	 ■

■  Maximum and Minimum Values of Quadratic Functions
If a quadratic function has vertex 1h,  k 2 , then the function has a minimum value at the 
vertex if its graph opens upward and a maximum value at the vertex if its graph opens 
downward. For example, the function graphed in Figure 1 has minimum value 5 when 
x  3, since the vertex 13,  5 2  is the lowest point on the graph.

Maximum or Minimum Value of a Quadratic Function

Let f be a quadratic function with standard form f 1x 2  a1x  h 2 2  k. The 
maximum or minimum value of f occurs at x  h.

If a  0, then the minimum value of f is f 1h 2  k.

If a  0, then the maximum value of f is f 1h 2  k.

y

x0

y

x0 h

k

h

Minimum

Maximum

k

Ï=a(x-h)™+k, a>0 Ï=a(x-h)™+k, a<0

Completing the square is discussed  
in Section 1.5.

Figure 1  f 1x 2  2x2  12x  13 

y

x

Vertex (3, _5)

13

5

0 1 6
1.42 4.58
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248  CHAPTER 3  ■  Polynomial and Rational Functions

Example 2  ■  Minimum Value of a Quadratic Function
Consider the quadratic function f 1x 2  5x2  30x  49.

(a)	 Express f in standard form.

(b)	 Sketch a graph of f.

(c)	 Find the minimum value of f.

Solution

(a)	 To express this quadratic function in standard form, we complete the square.

 f 1x 2  5x2  30x  49

  51x2  6x 2  49         Factor 5 from the x-terms

  51x2  6x  9 2  49  5 # 9      
Complete the square: Add 9 inside 
parentheses, subtract 5  9 outside

  51x  3 2 2  4         Factor and simplify

(b)	 �The graph is a parabola that has its vertex at 13,  4 2  and opens upward, as 
sketched in Figure 2.

(c)	 �Since the coefficient of x2 is positive, f has a minimum value. The minimum 
value is f 13 2  4.

Now Try Exercise 27	 ■

Example 3  ■  Maximum Value of a Quadratic Function
Consider the quadratic function f 1x 2  x2  x  2.

(a)	 Express f in standard form.

(b)	 Sketch a graph of f.

(c)	 Find the maximum value of f.

Solution

(a)	 To express this quadratic function in standard form, we complete the square.

 f 1x 2  x2  x  2

  1x2  x 2  2         Factor 1 from the x-terms

  Ax2  x  1
4B  2  11 2 14      

Complete the square: Add 1
4 inside 

parentheses, subtract 11 2 14 outside
  Ax  1

2B2  9
4         Factor and simplify

(b)	 �From the standard form we see that the graph is a parabola that opens downward  
and has vertex A12,  

9
4B . The graph of f is sketched in Figure 3.

y

x

1

10

!   ,    @1
2

9
4 9

4

2_1

Maximum value

Figure 3  Graph of 
f 1x 2  x2  x  2

(c)	 �Since the coefficient of x2 is negative, f has a maximum value, which is f A12B  9
4.

Now Try Exercise 29	 ■

In Example 3 you can check that the 
x-intercepts of the parabola are 21 and 
2. These are obtained by solving the 
equation f 1x 2  0.

y

x3

4

Ï=5(x-3)™+4

(3, 4)

0

49

Minimum
value 4

Figure 2
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SECTION 3.1  ■  Quadratic Functions and Models  249

Expressing a quadratic function in standard form helps us to sketch its graph as well 
as to find its maximum or minimum value. If we are interested only in finding the 
maximum or minimum value, then a formula is available for doing so. This formula is 
obtained by completing the square for the general quadratic function as follows.

 f 1x 2  ax2  bx  c

  a a x2 
b
a

x b  c         Factor a from the x-terms

  a a x2 
b
a

x 
b2

4a2 b  c  a a b2

4a2 b       

Complete the square: Add 
b2

4a2  

inside parentheses, subtract 

a a b2

4a2 b  outside

  a a x 
b

2a
b

2

 c 
b2

4a
        Factor

This equation is in standard form with h  b/ 12a 2  and k  c  b2/ 14a 2 . Since the 
maximum or minimum value occurs at x  h, we have the following result.

Maximum or Minimum Value of a Quadratic Function

The maximum or minimum value of a quadratic function f 1x 2  ax2  bx  c 
occurs at

x   

b

2a

If a  0, then the minimum value is f a 

b

2a
b .

If a  0, then the maximum value is f a 

b

2a
b .

Example 4  ■  ��Finding Maximum and Minimum Values  
of Quadratic Functions

Find the maximum or minimum value of each quadratic function.

(a)	 f 1x 2  x2  4x              

(b)	 g1x 2  2x2  4x  5

Solution

(a)	 �This is a quadratic function with a  1 and b  4. Thus the maximum or mini-
mum value occurs at

x   

b

2a
  

4

2 # 1
 2

	 	 Since a  0, the function has the minimum value

f 12 2  12 2 2  412 2  4

(b)	 �This is a quadratic function with a  2 and b  4. Thus the maximum or mini-
mum value occurs at

x   

b

2a
  

4

2 # 12 2  1

	 	 Since a  0, the function has the maximum value

f 11 2  211 2 2  411 2  5  3

Now Try Exercises 35 and 37	 ■

1

_6

_2 4

The maximum value
occurs at x = 1.

4

_6

_5 2

The minimum value
occurs at x = _2.
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250  CHAPTER 3  ■  Polynomial and Rational Functions

■  Modeling with Quadratic Functions
We study some examples of real-world phenomena that are modeled by quadratic func-
tions. These examples and the Applications exercises for this section show some of the 
variety of situations that are naturally modeled by quadratic functions.

Example 5  ■  Maximum Gas Mileage for a Car
Most cars get their best gas mileage when traveling at a relatively modest speed. The 
gas mileage M for a certain new car is modeled by the function

M1s 2   

1

28
 s2  3s  31  15  s  70

where s is the speed in mi/h and M is measured in mi/gal. What is the car’s best gas 
mileage, and at what speed is it attained?

Solution    The function M is a quadratic function with a   1
28 and b  3. Thus its 

maximum value occurs when

s   

b

2a
  

3

2A 
1

28B
 42

The maximum value is M142 2   
1

28 142 2 2  3142 2  31  32. So the car’s best 
gas mileage is 32 mi/gal when it is traveling at 42 mi/h.

Now Try Exercise 55	 ■

Example 6  ■  Maximizing Revenue from Ticket Sales
A hockey team plays in an arena that has a seating capacity of 15,000 spectators. 
With the ticket price set at $14, average attendance at recent games has been 9500. A 
market survey indicates that for each dollar the ticket price is lowered, the average 
attendance increases by 1000.

(a)	 Find a function that models the revenue in terms of ticket price. 

(b)	 Find the price that maximizes revenue from ticket sales.

(c)	 What ticket price is so high that no one attends and so no revenue is generated?

Solution 

(a)	 �Express the model in words.    The model that we want is a function that gives 
the revenue for any ticket price:

revenue   ticket price   attendance

15 70

40

0
The maximum gas
mileage occurs at 42 mi/h.

Discovery Project

Torricelli’s Law

Evangelista Torricelli (1608–1647) is best known for his invention of the 
barometer. He also discovered that the speed at which a fluid leaks from the 
bottom of a tank is related to the height of the fluid in the tank (a principle now 
called Torricelli’s Law). In this project we conduct a simple experiment to col-
lect data on the speed of water leaking through a hole in the bottom of a large 
soft-drink bottle. We then find an algebraic expression for Torricelli’s Law by 
fitting a quadratic function to the data we obtained. You can find the project at 
www.stewartmath.com.
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SECTION 3.1  ■  Quadratic Functions and Models  251

	 	 Choose the variable.    There are two varying quantities: ticket price and atten-
dance. Since the function we want depends on price, we let

x  ticket price

	 	 Next, we express attendance in terms of x.

In Words In Algebra

Ticket price x
Amount ticket price is lowered 14  x
Increase in attendance 1000114  x 2
Attendance 9500  1000114  x 2

	 �	 Set up the model.    The model that we want is the function R that gives the reve-
nue for a given ticket price x.

revenue   ticket price   attendance

 R 1x 2  x  39500  1000114  x 2 4
 R 1x 2  x 123,500  1000x 2
 R 1x 2  23,500x  1000x2

(b)	 �Use the model.    Since R is a quadratic function with a  1000 and 
b  23,500, the maximum occurs at

x   

b

2a
  

23,500

211000 2  11.75

	 	 So a ticket price of $11.75 gives the maximum revenue. 

(c)	 Use the model.    We want to find the ticket price for which R1x 2  0.

 23,500x  1000x2  0        Set R1x 2  0

 23.5x  x2  0        Divide by 1000

 x 123.5  x 2  0        Factor 

	 x  0 or x  23.5	 Solve for x

	 �	 So according to this model, a ticket price of $23.50 is just too high; at that price 
no one attends to watch this team play. (Of course, revenue is also zero if the 
ticket price is zero.) 

Now Try Exercise 65	 ■

concepts
	 1.	 To put the quadratic function f 1x 2  ax2  bx  c in  

standard form, we complete the    .

	 2.	 The quadratic function f 1x 2  a1x  h 2 2  k is in standard 
form.

(a)	 The graph of f  is a parabola with vertex  

1    ,  2.
(b)	 If a  0, the graph of f  opens    . In this case 

f 1h 2  k is the   value of f .

(c)	 If a  0, the graph of f  opens    . In this case 

f 1h 2  k is the   value of f .

	 3.	 The graph of f 1x 2  31x  2 2 2  6 is a parabola that opens 

   , with its vertex at 1    ,  2, and f 12 2 

  is the (minimum/maximum)   value of f .

	 4.	 The graph of f 1x 2  31x  2 2 2  6 is a parabola that 

opens    , with its vertex at 1    ,  2, and 

f 12 2    is the (minimum/maximum)   
value of f .

3.1 E xercises

150,000

250
Maximum attendance occurs  
when ticket price is $11.75. 
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252  CHAPTER 3  ■  Polynomial and Rational Functions

skills
5–8  ■  Graphs of Quadratic Functions    The graph of a quadratic 
function f  is given. (a) Find the coordinates of the vertex and the 
x- and y-intercepts. (b) Find the maximum or minimum value of 
f. (c) Find the domain and range of f.

	 5.	 f 1x 2  x2  6x  5	 6.	 f 1x 2  1
2 x2  2x  6

		

1

10 x

y

 

5

10 x

y

	 7.	 f 1x 2  2x2  4x  1	 8.	 f 1x 2  3x2  6x  1

		

1

10 x

y

1

10 x

y

9–24  ■  Graphing Quadratic Functions    A quadratic function f is 
given. (a) Express f in standard form. (b) Find the vertex and x- 
and y-intercepts of f. (c) Sketch a graph of f. (d) Find the domain 
and range of f.

	 9.	 f 1x 2  x2  2x  3	 10.	 f 1x 2  x2  4x  1

	11.	 f 1x 2  x2  6x	 12.	 f 1x 2  x2  8x

	13.	 f 1x 2  3x2  6x	 14.	 f 1x 2  x2  10x

	15.	 f 1x 2  x2  4x  3	 16.	 f 1x 2  x2  2x  2

	17.	 f 1x 2  x2  6x  4	 18.	 f 1x 2  x2  4x  4

19.	 f 1x 2  2x2  4x  3	 20.	 f 1x 2  3x2  6x  2

21.	 f 1x 2  2x2  20x  57	 22.	 f 1x 2  2x2  12x  10

23.	 f 1x 2  4x2  12x  1	 24.	 f 1x 2  3x2  2x  2

25–34  ■  Maximum and Minimum Values    A quadratic function 
f is given. (a) Express f in standard form. (b) Sketch a graph of 
f. (c) Find the maximum or minimum value of f.

25.	 f 1x 2  x2  2x  1	 26.	 f 1x 2  x2  8x  8

27.	 f 1x 2  3x2  6x  1	 28.	 f 1x 2  5x2  30x  4

29.	 f 1x 2  x2  3x  3	 30.	 f 1x 2  1  6x  x2

31.	 g1x 2  3x2  12x  13	 32.	 g1x 2  2x2  8x  11

33.	 h1x 2  1  x  x2	 34.	 h1x 2  3  4x  4x2

35–44  ■  Formula for Maximum and Minimum Values     
Find the maximum or minimum value of the function.

35.	 f 1x 2  2x2  4x  1	 36.	 f 1x 2  3  4x  x2

37.	 f 1 t 2  3  80t  20t2	 38.	 f 1x 2  6x2  24x  100

39.	 f 1s 2  s2  1.2s  16	 40.	 g1x 2  100x2  1500x

41.	 h1x 2  1
2 x2  2x  6	 42.	 f 1x 2   

x 2

3
 2x  7

43.	 f 1x 2  3  x  1
2 x2	 44.	 g1x 2  2x1x  4 2  7

45–46  ■  Maximum and Minimum Values    A quadratic function 
is given. (a) Use a graphing device to find the maximum or mini-
mum value of the quadratic function f, rounded to two decimal 
places. (b) Find the exact maximum or minimum value of f, and 
compare it with your answer to part (a).

45.	 f 1x 2  x2  1.79x  3.21

46.	 f 1x 2  1  x  !2x2

Skills plus
47–48  ■  Finding Quadratic Functions    Find a function f whose 
graph is a parabola with the given vertex and that passes through 
the given point.

	47.	 Vertex 12, 3 2 ;  point 13, 1 2
	48.	 Vertex 11, 5 2 ;  point 13, 7 2
	49.	 Maximum of a Fourth-Degree Polynomial    Find the maxi-

mum value of the function 

f 1x 2  3  4x2  x4

		  [Hint: Let t  x2.]

	50.	 Minimum of a Sixth-Degree Polynomial    Find the minimum 
value of the function 

f 1x 2  2  16x3  4x6

		  [Hint: Let t  x3.]

applications
	51.	 Height of a Ball    If a ball is thrown directly upward with a 

velocity of 40 ft/s, its height (in feet) after t seconds is given  
by y  40t  16t2. What is the maximum height attained by 
the ball?

	52.	 Path of a Ball    A ball is thrown across a playing field from  
a height of 5 ft above the ground at an angle of 45º to the 
horizontal at a speed of 20 ft/s. It can be deduced from phys-
ical principles that the path of the ball is modeled by the 
function

y   

32

120 2 2 x2  x  5

		  where x is the distance in feet that the ball has traveled 
horizontally.

(a)	 Find the maximum height attained by the ball.
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SECTION 3.1  ■  Quadratic Functions and Models  253

(b)	� Find the horizontal distance the ball has traveled when it 
hits the ground.

x

5 ft

	53.	 Revenue    A manufacturer finds that the revenue generated 
by selling x units of a certain commodity is given by the 
function R1x 2  80x  0.4x2, where the revenue R1x 2  is 
measured in dollars. What is the maximum revenue, and how 
many units should be manufactured to obtain this maximum?

	54.	 Sales    A soft-drink vendor at a popular beach analyzes his 
sales records and finds that if he sells x cans of soda pop in 
one day, his profit (in dollars) is given by

P1x 2  0.001x2  3x  1800

		  What is his maximum profit per day, and how many cans 
must he sell for maximum profit?

	55.	 Advertising    The effectiveness of a television commercial 
depends on how many times a viewer watches it. After some 
experiments an advertising agency found that if the effective-
ness E is measured on a scale of 0 to 10, then

E1n 2  2
3 
n  1

90 n2

		  where n is the number of times a viewer watches a given 
commercial. For a commercial to have maximum effective-
ness, how many times should a viewer watch it?

	56.	 Pharmaceuticals    When a certain drug is taken orally,  
the concentration of the drug in the patient’s bloodstream  
after t minutes is given by C1 t 2  0.06t  0.0002t2, where  
0  t  240 and the concentration is measured in mg/L. 
When is the maximum serum concentration reached, and 
what is that maximum concentration?

	57.	 Agriculture    The number of apples produced by each tree in 
an apple orchard depends on how densely the trees are 
planted. If n trees are planted on an acre of land, then each 
tree produces 900  9n apples. So the number of apples  
produced per acre is

A1n 2  n1900  9n 2
		  How many trees should be planted per acre to obtain the 

maximum yield of apples?

	58.	 Agriculture    At a certain vineyard it is found that each grape 
vine produces about 10 lb of grapes in a season when about 
700 vines are planted per acre. For each additional vine that 
is planted, the production of each vine decreases by about  
1 percent. So the number of pounds of grapes produced per 
acre is modeled by

A1n 2  1700  n 2 110  0.01n 2
		  where n is the number of additional vines planted. Find the 

number of vines that should be planted to maximize grape 
production.

59–62  ■  Maxima and Minima    Use the formulas of this section 
to give an alternative solution to the indicated problem in Focus 
on Modeling: Modeling with Functions on pages 237–244.

	59.	 Problem 21	 60.	 Problem 22

	61.	 Problem 25	 62.	 Problem 24

	63.	 Fencing a Horse Corral    Carol has 2400 ft of fencing to fence 
in a rectangular horse corral.

(a)	� Find a function that models the area of the corral in 
terms of the width x of the corral.

(b)	� Find the dimensions of the rectangle that maximize the 
area of the corral.

x 1200 – x

	64.	 Making a Rain Gutter    A rain gutter is formed by bending up 
the sides of a 30-in.-wide rectangular metal sheet as shown in 
the figure.

(a)	� Find a function that models the cross-sectional area of 
the gutter in terms of x.

(b)	� Find the value of x that maximizes the cross-sectional 
area of the gutter.

(c)	 What is the maximum cross-sectional area for the gutter?

x

30 in.

	65.	 Stadium Revenue    A baseball team plays in a stadium that 
holds 55,000 spectators. With the ticket price at $10, the 
average attendance at recent games has been 27,000. A mar-
ket survey indicates that for every dollar the ticket price is 
lowered, attendance increases by 3000.

(a)	� Find a function that models the revenue in terms of ticket 
price.

(b)	 Find the price that maximizes revenue from ticket sales.

(c)	 What ticket price is so high that no revenue is generated?
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254  CHAPTER 3  ■  Polynomial and Rational Functions

	66.	 Maximizing Profit    A community bird-watching society 
makes and sells simple bird feeders to raise money for its 
conservation activities. The materials for each feeder cost $6, 
and the society sells an average of 20 per week at a price of 
$10 each. The society has been considering raising the price, 
so it conducts a survey and finds that for every dollar 
increase, it will lose 2 sales per week.

(a)	� Find a function that models weekly profit in terms of 
price per feeder.

(b)	� What price should the society charge for each feeder  
to maximize profits? What is the maximum weekly 
profit?

DiSCUSS  ■  DISCOVER  ■  PROVE  ■  WRITE
	67.	 DISCOVER:  Vertex and x-Intercepts    We know that the graph 

of the quadratic function f 1x 2  1x  m 2 1x  n 2  is a parab-
ola. Sketch a rough graph of what such a parabola would 
look like. What are the x-intercepts of the graph of f? Can 
you tell from your graph the x-coordinate of the vertex in 
terms of m and n? (Use the symmetry of the parabola.) Con-
firm your answer by expanding and using the formulas of this 
section.

3.2  Polynomial Functions and Their Graphs
■  Polynomial Functions  ■  Graphing Basic Polynomial Functions  ■  Graphs of Polynomial 
Functions: End Behavior  ■ U sing Zeros to Graph Polynomials  ■ S hape of the Graph Near  
a Zero  ■ L ocal Maxima and Minima of Polynomials

■  Polynomial Functions
In this section we study polynomial functions of any degree. But before we work with 
polynomial functions, we must agree on some terminology.

Polynomial Functions

A polynomial function of degree n is a function of the form

P1x 2  an 
x 

n  an1x
n1  . . .  a1x  a0

where n is a nonnegative integer and an ? 0.

The numbers a0, a1, a2, . . . , an are called the coefficients of the polynomial. 

The number a0 is the constant coefficient or constant term. 

The number an, the coefficient of the highest power, is the leading coefficient, 
and the term an 

xn is the leading term.

We often refer to polynomial functions simply as polynomials. The following poly-
nomial has degree 5, leading coefficient 3, and constant term 6.

3x5  6x4  2x3  x2  7x  6

Degree 5Leading 
coefficient 3

Leading term 3x5

Coefficients 3, 6, 2, 1, 7, and 6

Constant term 6
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SECTION 3.2  ■  Polynomial Functions and Their Graphs  255

The table lists some more examples of polynomials.

Polynomial Degree Leading term Constant term

P1x 2  4x  7 1 4x 7
P1x 2  x2  x 2 x2 0
P1x 2  2x3  6x2  10 3 2x3 10
P1x 2  5x4  x  2 4 5x4 2

If a polynomial consists of just a single term, then it is called a monomial. For example, 
P1x 2  x3 and Q1x 2  6x5 are monomials.

■  Graphing Basic Polynomial Functions
The simplest polynomial functions are the monomials P1x 2  xn, whose graphs are 
shown in Figure 1. As the figure suggests, the graph of P1x 2  xn has the same general 
shape as the graph of y  x2 when n is even and the same general shape as the graph 
of y  x3 when n is odd. However, as the degree n becomes larger, the graphs become 
flatter around the origin and steeper elsewhere.

Figure 1  Graphs of monomials

y

0 x1

1

(e)  y=x∞

y

0 x1

1

(d)  y=x¢

y

0 x1

1

(c)  y=x£

y

0 x1

1

(b)  y=≈

y

0 x1

1

(a)  y=x

Example 1  ■  Transformations of Monomials
Sketch graphs of the following functions.

(a)	 P1x 2  x3	 (b)  Q1x 2  1x  2 2 4
(c)	 R1x 2  2x5  4

Splines

Mathematics in the Modern World

adjusting the coefficients of the polynomial (see Example 10,  
page 265).

Curves obtained in this way are called cubic splines. In modern com-
puter design programs, such as Adobe Illustrator or Microsoft Paint, a 
curve can be drawn by fixing two points, then using the mouse to drag 
one or more anchor points. Moving the anchor points amounts to adjust-
ing the coefficients of a cubic polynomial.

A spline is a long strip of wood that is curved while held fixed at certain 
points. In the old days shipbuilders used splines to create the curved 
shape of a boat’s hull. Splines are also used to make the curves of a 
piano, a violin, or the spout of a teapot.

Mathematicians discovered that the shapes of splines can be 
obtained by piecing together parts of polynomials. For example, the 
graph of a cubic polynomial can be made to fit specified points by 
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256  CHAPTER 3  ■  Polynomial and Rational Functions

Solution    We use the graphs in Figure 1 and transform them using the techniques of 
Section 2.6.

(a)	 �The graph of P1x 2  x3 is the reflection of the graph of y  x3 in the x-axis, as 
shown in Figure 2(a) below.

(b)	 �The graph of Q1x 2  1x  2 2 4 is the graph of y  x4 shifted to the right 2 units, 
as shown in Figure 2(b).

(c)	 �We begin with the graph of y  x5. The graph of y  2x5 is obtained by stretch- 
ing the graph vertically and reflecting it in the x-axis (see the dashed blue graph 
in Figure 2(c)). Finally, the graph of R1x 2  2x5  4 is obtained by shifting 
upward 4 units (see the red graph in Figure 2(c)).

y

0 x

Q(x)=(x-2)¢

8

16

2 4

y

0 x1

1

P(x)=_x£ y

0 x

R(x)=_2x∞+44

8

1_1_2

(a) (b) (c)Figure 2

Now Try Exercise 5	 ■

■  Graphs of Polynomial Functions: End Behavior
The graphs of polynomials of degree 0 or 1 are lines (Sections 1.10 and 2.5), and the 
graphs of polynomials of degree 2 are parabolas (Section 3.1). The greater the degree 
of a polynomial, the more complicated its graph can be. However, the graph of a poly-
nomial function is continuous. This means that the graph has no breaks or holes (see 
Figure 3). Moreover, the graph of a polynomial function is a smooth curve; that is, it 
has no corners or sharp points (cusps) as shown in Figure 3.

Not the graph of a
polynomial function

y y y

x x x

break

hole

Not the graph of a
polynomial function

corner

cusp

Graph of a polynomial
function

smooth and
continuous

y

x

Graph of a polynomial
function

smooth and
continuous

Figure 3
The domain of a polynomial function is the set of all real numbers, so we can sketch 

only a small portion of the graph. However, for values of x  outside the portion of the 
graph we have drawn, we can describe the behavior of the graph.

The end behavior of a polynomial is a description of what happens as x becomes 
large in the positive or negative direction. To describe end behavior, we use the follow-
ing arrow notation.

Symbol Meaning

xS  x goes to infinity; that is, x increases without bound
xS x goes to negative infinity; that is, x decreases without bound
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SECTION 3.2  ■  Polynomial Functions and Their Graphs  257

For example, the monomial y  x2 in Figure 1(b) has the following end behavior.

yS  as xS   and  yS  as xS

The monomial y  x3 in Figure 1(c) has the following end behavior.

yS  as xS   and  yS as xS

For any polynomial the end behavior is determined by the term that contains the high-
est power of x, because when x is large, the other terms are relatively insignificant in 
size. The following box shows the four possible types of end behavior, based on the 
highest power and the sign of its coefficient.

End Behavior of Polynomials

The end behavior of the polynomial P1x 2  anxn  an1x
n1  . . .  a1x  a0 is determined by the degree n and the 

sign of the leading coefficient an, as indicated in the following graphs.

	 P has odd degree	 P has even degree

y

0 x

y

0 x

y

0 x

y

0 x

y  ` as
x  `

y  ` as
x  _`

y  ` as
x  _`

y  ` as
x  `

y  _` as
x  `

y  _` as
x  `

y  _` as
x  _`

y  _` as
x  _`

	 Leading coefficient positive	  Leading coefficient negative	 Leading coefficient positive	 Leading coefficient negative

Example 2  ■  End Behavior of a Polynomial
Determine the end behavior of the polynomial

P1x 2  2x4  5x3  4x  7

Solution    The polynomial P has degree 4 and leading coefficient 2. Thus P has 
even degree and negative leading coefficient, so it has the following end behavior.

yS as xS   and  yS as xS

The graph in Figure 4 illustrates the end behavior of P.

Figure 4  P1x 2  2x4  5x3  4x  7

30

_50

_3 5

y  _` as
x  _`

y  _` as
x  `

Now Try Exercise 11	 ■
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258  CHAPTER 3  ■  Polynomial and Rational Functions

Example 3  ■  End Behavior of a Polynomial
(a)	 Determine the end behavior of the polynomial P1x 2  3x5  5x3  2x.

(b)	 �Confirm that P and its leading term Q1x 2  3x5 have the same end behavior by 
graphing them together.

Solution

(a)	 �Since P has odd degree and positive leading coefficient, it has the following end 
behavior.

yS  as xS   and  yS as xS

(b)	 �Figure 5 shows the graphs of P and Q in progressively larger viewing rectangles. 
The larger the viewing rectangle, the more the graphs look alike. This confirms 
that they have the same end behavior.

Now Try Exercise 45	 ■

To see algebraically why P and Q in Example 3 have the same end behavior, factor 
P as follows and compare with Q.

 P1x 2  3x5 a 1 
5

3x2 
2

3x4 b       
 Q1x 2  3x5

When x is large, the terms 5/ 13x2 2  and 2/ 13x4 2  are close to 0 (see Exercise 90 on  
page 12). So for large x we have

 P1x 2  3x511  0  0 2   3x5  Q1x 2
So when x is large, P and Q have approximately the same values. We can also see this 
numerically by making a table like the one shown below.

x Pxxc Qxxc

15     2,261,280     2,278,125
30   72,765,060   72,900,000
50 936,875,100 937,500,000

By the same reasoning we can show that the end behavior of any polynomial is de-
termined by its leading term.

■ U sing Zeros to Graph Polynomials
If P is a polynomial function, then c is called a zero of P if P1c 2  0. In other words, 
the zeros of P are the solutions of the polynomial equation P1x 2  0. Note that if 
P1c 2  0, then the graph of P has an x-intercept at x  c, so the x-intercepts of the 
graph are the zeros of the function.

10,000

_10,000

_10 10

50

_50

_3 3

2

_2

_2 2

Q P
1

_1

_1 1

Q

P

PQ PQ

Figure 5   
 P1x 2  3x5  5x3  2x
 Q1x 2  3x5
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SECTION 3.2  ■  Polynomial Functions and Their Graphs  259

Real Zeros of Polynomials

If P is a polynomial and c is a real number, then the following are equivalent:

1.  c is a zero of P.

2.  x  c is a solution of the equation P1x 2  0.

3.  x  c is a factor of P1x 2 .
4.  c is an x-intercept of the graph of P.

To find the zeros of a polynomial P, we factor and then use the Zero-Product Prop-
erty (see page 48). For example, to find the zeros of P1x 2  x2  x  6, we factor P 
to get

P1x 2  1x  2 2 1x  3 2
From this factored form we easily see that

1.	 2 is a zero of P.

2.	 x  2 is a solution of the equation x2  x  6  0.

3.	 x  2 is a factor of x2  x  6.

4.	 2 is an x-intercept of the graph of P.

The same facts are true for the other zero, 3.
The following theorem has many important consequences. (See, for instance, the 

Discovery Project referenced on page 276.) Here we use it to help us graph polynomial 
functions.

Intermediate Value Theorem for Polynomials

If P is a polynomial function and P1a 2  and P1b 2  have opposite signs, then 
there exists at least one value c between a and b for which P1c 2  0.

We will not prove this theorem, but Figure 6 shows why it is intuitively plausible.
One important consequence of this theorem is that between any two successive zeros 

the values of a polynomial are either all positive or all negative. That is, between two suc-
cessive zeros the graph of a polynomial lies entirely above or entirely below the x-axis. To 
see why, suppose c1 and c2 are successive zeros of P. If P has both positive and negative 
values between c1 and c2, then by the Intermediate Value Theorem, P must have another 
zero between c1 and c2. But that’s not possible because c1 and c2 are successive zeros. This 
observation allows us to use the following guidelines to graph polynomial functions.

Guidelines for Graphing Polynomial Functions

1.	 �Zeros.    Factor the polynomial to find all its real zeros; these are the  
x-intercepts of the graph.

2.	 �Test Points.    Make a table of values for the polynomial. Include test points to 
determine whether the graph of the polynomial lies above or below the x-axis 
on the intervals determined by the zeros. Include the y-intercept in the table.

3.	 End Behavior.    Determine the end behavior of the polynomial.

4.	 �Graph.    Plot the intercepts and other points you found in the table. Sketch 
a smooth curve that passes through these points and exhibits the required 
end behavior.

Figure 6

0 x

y

P(b)

P(a)

a
c b

y=P(x)
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260  CHAPTER 3  ■  Polynomial and Rational Functions

Example 4  ■  Using Zeros to Graph a Polynomial Function
Sketch the graph of the polynomial function P1x 2  1x 1 2 2 1x  1 2 1x  3 2 .
SOLUTION    The zeros are x  2, 1, and 3. These determine the intervals 1`,  2 2 , 
12,  1 2 , 11,  3 2 , and 13,  ` 2 . Using test points in these intervals, we get the informa-
tion in the following sign diagram (see Section 1.8).

Sign of
P1x 2  1x 1 2 2 1x  1 2 1x  3 2
Graph of P

_2 1

+-

below
x-axis

above
x-axis

below
x-axis

above
x-axis

+

3

-

Test point
x = –3

P(–3) < 0

Test point
x = –1

P(–1) > 0

Test point
x = 2

P (2) < 0

Test point
x = 4

P (3) > 0

Plotting a few additional points and connecting them with a smooth curve helps us to 
complete the graph in Figure 7.

Test point →

Test point →

Test point →

Test point →

Figure 7  P1x 2  1x 1 2 2 1x  1 2 1x  3 2

Test point
P (–1) > 0

Test point
P (4) > 0

Test point
P (2) < 0

Test point
P (–3) < 0

x

5

1

y

0

x Pxxc

3 24
2 0
1 8

0 6
1 0
2 4
3 0
4 18

Now Try Exercise 17	 ■

Example 5  ■  Finding Zeros and Graphing a Polynomial Function
Let P1x 2  x3  2x2  3x.

(a)	 Find the zeros of P.      (b)  Sketch a graph of P.

Solution 

(a)	 To find the zeros, we factor completely.

 P1x 2  x3  2x2  3x

  x1x2  2x  3 2         Factor x

  x1x  3 2 1x 1 1 2         Factor quadratic

	 	 Thus the zeros are x  0, x  3, and x  1.

(b)	 �The x-intercepts are x  0, x  3, and x  1. The y-intercept is P10 2  0. We 
make a table of values of P1x 2 , making sure that we choose test points between 
(and to the right and left of) successive zeros.

	 	�     Since P is of odd degree and its leading coefficient is positive, it has the fol-
lowing end behavior:

yS ` as xS `  and  yS` as xS`
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Automotive Design
Computer-aided design (CAD) has com-
pletely changed the way in which car 
companies design and manufacture cars. 
Before the 1980s automotive engineers 
would build a full-scale “nuts and bolts” 
model of a proposed new car; this was 
really the only way to tell whether the 
design was feasible. Today automotive 
engineers build a mathematical model, 
one that exists only in the memory of a 
computer. The model incorporates all the 
main design features of the car. Certain 
polynomial curves, called splines (see 
page 255), are used in shaping the body 
of the car. The resulting “mathematical 
car” can be tested for structural stability, 
handling, aerodynamics, suspension 
response, and more. All this testing is 
done before a prototype is built. As you 
can imagine, CAD saves car manufactur-
ers millions of dollars each year. More 
importantly, CAD gives automotive engi-
neers far more flexibility in design; 
desired changes can be created and 
tested within seconds. With the help of 
computer graphics, designers can see 
how good the “mathematical car” looks 
before they build the real one. Moreover, 
the mathematical car can be viewed from 
any perspective; it can be moved, 
rotated, or seen from the inside. These 
manipulations of the car on the com-
puter monitor translate mathematically 
into solving large systems of linear 
equations.

Mathematics in the Modern World
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	 	� We plot the points in the table and connect them by a smooth curve to complete 
the graph, as shown in Figure 8.

Test point →

Test point →

Test point →

Test point →

Figure 8  P1x 2  x3  2x2  3x

x Pxxc

2 10
1 0
 1

2   7
8

0 0
1 4
2 6
3 0
4 20

y

0 x
1

5

Now Try Exercise 31	 ■

Example 6  ■  Finding Zeros and Graphing a Polynomial Function
Let P1x 2  2x4  x3 1 3x2.

(a)	 Find the zeros of P.      (b)  Sketch a graph of P.

Solution

(a)	 To find the zeros, we factor completely.

 P1x 2  2x4  x3 1 3x2

  x212x2 1 x  3 2         Factor x2

  x212x 1 3 2 1x  1 2         Factor quadratic

	 	 Thus the zeros are x  0, x  3
2, and x  1.

(b)	 �The x-intercepts are x  0, x  3
2, and x  1. The y-intercept is P10 2  0. We 

make a table of values of P1x 2 , making sure that we choose test points between 
(and to the right and left of) successive zeros.

	 	�     Since P is of even degree and its leading coefficient is negative, it has the fol-
lowing end behavior.

yS` as xS `  and  yS` as xS`

	 	� We plot the points from the table and connect the points by a smooth curve to 
complete the graph in Figure 9.

y

0 x1

2

_12

Figure 9  P1x 2  2x4  x3 1 3x2

x Pxxc

2 12
1.5 0
1 2
0.5 0.75

0 0
0.5 0.5
1 0
1.5 6.75

Now Try Exercise 35	 ■

A table of values is most easily calcu-
lated by using a programmable cal
culator or a graphing calculator. See 
Appendix D, Using the TI-83/84 Graph-
ing Calculator, for specific instructions. 
Go to www.stewartmath.com.
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262  CHAPTER 3  ■  Polynomial and Rational Functions

Example 7  ■  Finding Zeros and Graphing a Polynomial Function
Let P1x 2  x3  2x2  4x  8.

(a)	 Find the zeros of P.      (b)  Sketch a graph of P.

Solution

(a)	 To find the zeros, we factor completely.

 P1x 2  x3  2x2  4x  8

  x21x  2 2  41x  2 2         Group and factor

  1x2  4 2 1x  2 2         Factor x  2

  1x  2 2 1x  2 2 1x  2 2         Difference of squares

  1x  2 2 1x  2 2 2         Simplify

	 	 Thus the zeros are x  2 and x  2.

(b)	 �The x-intercepts are x  2 and x  2. The y-intercept is P10 2  8. The table 
gives additional values of P1x 2 .

	 	�     Since P is of odd degree and its leading coefficient is positive, it has the fol-
lowing end behavior.

yS  as xS   and  yS as xS

	 	 We connect the points by a smooth curve to complete the graph in Figure 10.

y

0 x1

5

Figure 10 
P1x 2  x3  2x2  4x  8

x Pxxc

3 25
2 0
1 9

0 8
1 3
2 0
3 5

Now Try Exercise 37	 ■

■ S hape of the Graph Near a Zero
Although x  2 is a zero of the polynomial in Example 7, the graph does not cross the 
x-axis at the x-intercept 2. This is because the factor 1x  2 2 2 corresponding to that 
zero is raised to an even power, so it doesn’t change sign as we test points on either side 
of 2. In the same way the graph does not cross the x-axis at x  0 in Example 6.

Discovery Project

Bridge Science

If you want to build a bridge, how can you be sure that your bridge design is 
strong enough to support the cars that will drive over it? In this project we per-
form a simple experiment using paper “bridges” to collect data on the weight 
our bridges can support. We model the data with linear and power functions to 
determine which  model best fits the data. The model we obtain allows us to 
predict the strength of a large bridge before it is built. You can find the project 
at www.stewartmath.com. 
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In general, if c is a zero of P and the corresponding factor x  c occurs exactly m 
times in the factorization of P, then we say that c is a zero of multiplicity m. By con-
sidering test points on either side of the x-intercept c, we conclude that the graph 
crosses the x-axis at c if the multiplicity m is odd and does not cross the x-axis if m is 
even. Moreover, it can be shown by using calculus that near x  c the graph has the 
same general shape as the graph of y  A1x  c 2m.

Shape of the Graph Near a Zero of Multiplicity m

If c is a zero of P of multiplicity m, then the shape of the graph of P near c is as 
follows.

Multiplicity of c	 Shape of the graph of P near the x-intercept c

m odd, m  1

	

OR

y

xc

y

xc

OR

y

xc

y

xc
m even, m  1

Example 8  ■  Graphing a Polynomial Function Using Its Zeros
Graph the polynomial P1x 2  x41x  2 2 31x  1 2 2.

Solution    The zeros of P are 1, 0, and 2 with multiplicities 2, 4, and 3, respectively:

P1x 2  x41x  2 2 31x  1 2 2
The zero 2 has odd multiplicity, so the graph crosses the x-axis at the x-intercept 2. 
But the zeros 0 and 1 have even multiplicity, so the graph does not cross the x-axis 
at the x-intercepts 0 and 1.

Since P is a polynomial of degree 9 and has positive leading coefficient, it has the 
following end behavior:

yS  as xS   and  yS as xS

With this information and a table of values we sketch the graph in Figure 11.

y

0 x
1

5
Even
multiplicities

Odd multiplicity

Figure 11  P1x 2  x41x  2 2 31x  1 2 2

x Pxxc

1.3 9.2
1 0
0.5 3.9

0 0
1 4
2 0
2.3 8.2

Now Try Exercise 29	 ■

0 is a zero of 
multiplicity 4

2 is a zero of 
multiplicity 3

–1 is a zero of 
multiplicity 2
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264  CHAPTER 3  ■  Polynomial and Rational Functions

■ L ocal Maxima and Minima of Polynomials
Recall from Section 2.3 that if the point 1a, f 1a 22  is the highest point on the graph 
of f within some viewing rectangle, then f 1a 2  is a local maximum value of f, and if 
1b,  f 1b 22  is the lowest point on the graph of f within a viewing rectangle, then f 1b 2  
is a local minimum value (see Figure 12). We say that such a point 1a, f 1a 22  is a  
local maximum point on the graph and that 1b, f 1b 22  is a local minimum point. 
The local maximum and minimum points on the graph of a function are called its 
local extrema.

0 a b

Ób, f(b)Ô
Local minimum point

Óa, f(a)Ô
Local maximum point

y=Ï

x

y

Figure 12

For a polynomial function the number of local extrema must be less than the degree, 
as the following principle indicates. (A proof of this principle requires calculus.)

Local Extrema of Polynomials

If P1x 2  anxn  an1x
n1  . . .  a1x  a0 is a polynomial of degree n, then 

the graph of P has at most n  1 local extrema.

A polynomial of degree n may in fact have fewer than n  1 local extrema. For  
example, P1x 2  x5 (graphed in Figure 1) has no local extrema, even though it is of 
degree 5. The preceding principle tells us only that a polynomial of degree n can have 
no more than n  1 local extrema.

Example 9  ■  The Number of Local Extrema
Graph the polynomial and determine how many local extrema it has.

(a)	 P11x 2  x4  x3  16x2  4x  48

(b)	 P21x 2  x5  3x4  5x3  15x2  4x  15      
(c)	 P31x 2  7x4  3x2  10x

Solution    The graphs are shown in Figure 13.

(a)	 �P1 has two local minimum points and one local maximum point, for a total of 
three local extrema.

(b)	 �P2 has two local minimum points and two local maximum points, for a total of 
four local extrema.

(c)	 P3 has just one local extremum, a local minimum.
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100

_100

_5 5

(a)

100

_100

_5 5

(b)

100

_100

_5 5

P⁄(x)=x¢+x£-16≈-4x+48 P¤(x)=x∞+3x¢-5x£-15≈+4x-15 P‹(x)=7x¢+3≈-10x

(c)

Figure 13

Now Try Exercises 65 and 67	 ■

With a graphing calculator we can quickly draw the graphs of many functions at 
once, on the same viewing screen. This allows us to see how changing a value in the 
definition of the functions affects the shape of its graph. In the next example we apply 
this principle to a family of third-degree polynomials.

Example 10  ■  A Family of Polynomials
Sketch the family of polynomials P1x 2  x3  cx2 for c  0, 1, 2, and 3. How does 
changing the value of c affect the graph?

Solution    The polynomials

P01x 2  x3             P11x 2  x3  x2

P21x 2  x3  2x2            P31x 2  x3  3x2

are graphed in Figure 14. We see that increasing the value of c causes the graph to 
develop an increasingly deep “valley” to the right of the y-axis, creating a local maxi-
mum at the origin and a local minimum at a point in Quadrant IV. This local mini-
mum moves lower and farther to the right as c increases. To see why this happens, 
factor P1x 2  x21x  c 2 . The polynomial P has zeros at 0 and c, and the larger c 
gets, the farther to the right the minimum between 0 and c will be.

Now Try Exercise 75	 ■

10

_10

_2 4

c=0 c=1 c=2 c=3

Figure 14  A family of polynomials 
P1x 2  x3  cx2

concepts
	 1.	 Only one of the following graphs could be the graph of a 

polynomial function. Which one? Why are the others not 
graphs of polynomials?

I
y

x

II
y

x

III
y

x

IV
y

x

	 2.	 Describe the end behavior of each polynomial.

(a)	 y  x3  8x2  2x  15

	 End behavior:    yS       as    xS 

		  yS       as    xS

3.2 E xercises
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266  CHAPTER 3  ■  Polynomial and Rational Functions

(b)	 y  2x4  12x  100

	 End behavior:	 yS       as    xS 

				  yS       as    xS

	 3.	 If c is a zero of the polynomial P, then

(a)	 P1c 2     .

(b)	 x  c is a   of P1x 2 .
(c)	 c is a(n)   -intercept of the graph of P.

	 4.	 Which of the following statements couldn’t possibly be true 
about the polynomial function P?

(a)	 P has degree 3, two local maxima, and two local minima.

(b)	 P has degree 3 and no local maxima or minima.

(c)	 P has degree 4, one local maximum, and no local 
minima.

skills
5–8  ■  Transformations of Monomials    Sketch the graph of each 
function by transforming the graph of an appropriate function of 
the form y  xn from Figure 1. Indicate all x- and y-intercepts on 
each graph.

	 5.	 (a)	 P1x 2  x2  4	 (b)	 Q1x 2  1x  4 2 2
(c)	 P1x 2  2x2  3	 (d)	 P1x 2  1x  2 2 2

	 6.	 (a)	 P1x 2  x4  16	 (b)	 P1x 2  1x  5 2 4
(c)	 P1x 2  5x4  5	 (d)	 P1x 2  1x  5 2 4

	 7.	 (a)	 P1x 2  x3  8	 (b)	 Q1x 2  x3  27

(c)	 R1x 2  1x  2 2 3	 (d)	 S1x 2  1
2 1x  1 2 3  4

	 8.	 (a)	 P1x 2  1x  3 2 5	 (b)	 Q1x 2  21x  3 2 5  64

(c)	 R1x 2   
1
2 1x  2 2 5	 (d)	 S1x 2   

1
2 1x  2 2 5  16

9–14  ■  End Behavior    A polynomial function is given.  
(a) Describe the end behavior of the polynomial function.  
(b) Match the polynomial function with one of the graphs I–VI.

	 9.	 P1x 2  x 1x2  4 2 	 10.	 Q1x 2  x21x2  4 2
	11.	 R1x 2  x5  5x3  4x	 12.	 S1x 2  1

2 x6  2x4

	13.	 T1x 2  x4  2x3	 14.	 U1x 2  x3  2x2

I IIy

x0 1
1

y

x0 1
1

III IVy

x0 1
1

y

x0 1

1

y

x0 1
1

V VI y

x0 1

1

15–30  ■  Graphing Factored Polynomials    Sketch the graph of 
the polynomial function. Make sure your graph shows all intercepts 
and exhibits the proper end behavior.

15.	 P1x 2  1x  1 2 1x  2 2
16.	 P1x 2  12  x 2 1x  5 2
17.	 P1x 2  x1x  3 2 1x  2 2
18.	 P1x 2  x 1x  3 2 1x  2 2
19.	 P1x 2  12x  1 2 1x  1 2 1x  3 2
20.	 P1x 2  1x  3 2 1x  2 2 13x  2 2
	21.	 P1x 2  1x  2 2 1x  1 2 1x  2 2 1x  3 2
	22.	 P1x 2  x1x  1 2 1x  1 2 12  x 2
	23.	 P1x 2  2x1x  2 2 2

	24.	 P1x 2  1
5 x 1x  5 2 2

	25.	 P1x 2  1x  2 2 1x  1 2 212x  3 2
	26.	 P1x 2  1x  1 2 21x  1 2 31x  2 2
	27.	 P1x 2  1

12 1x  2 2 21x  3 2 2

	28.	 P1x 2  1x  1 2 21x  2 2 3

	29.	 P1x 2  x31x  2 2 1x  3 2 2

	30.	 P1x 2  1x  3 2 21x  1 2 2

31–44  ■  Graphing Polynomials    Factor the polynomial and use 
the factored form to find the zeros. Then sketch the graph.

31.	 P1x 2  x3  x2  6x	 32.	 P1x 2  x3  2x2  8x

33.	 P1x 2  x3  x2  12x	 34.	 P1x 2  2x3  x2  x

35.	 P1x 2  x4  3x3  2x2
	 36.	 P1x 2  x5  9x3

37.	 P1x 2  x3  x2  x  1

	38.	 P1x 2  x3  3x2  4x  12

39.	 P1x 2  2x3  x2  18x  9

40.	 P1x 2  1
8 12x4  3x3  16x  24 2 2

41.	 P1x 2  x4  2x3  8x  16

42.	 P1x 2  x4  2x3  8x  16

43.	 P1x 2  x4  3x2  4	 44.	 P1x 2  x6  2x3  1

45–50  ■  End Behavior    Determine the end behavior of P. Com-
pare the graphs of P and Q in large and small viewing rectangles, 
as in Example 3(b).

45.	 P1x 2  3x3  x2  5x  1; Q1x 2  3x3

46.	 P1x 2  1
8 x3  1

4 x2  12x; Q1x 2  1
8 x3

47.	 P1x 2  x4  7x2  5x  5; Q1x 2  x4
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48.	 P1x 2  x5  2x2  x; Q1x 2  x5

49.	 P1x 2  x11  9x9; Q1x 2  x11

50.	 P1x 2  2x2  x12; Q1x 2  x12

51–54  ■  Local Extrema    The graph of a polynomial function is 
given. From the graph, find (a) the x- and y-intercepts, and (b) the 
coordinates of all local extrema.

51.	 P1x 2  x2  4x	 52.	 P1x 2  2
9 x3  x2

y

0 1

1

x

	

0

y

x1

1

53.	 P1x 2  1
2 x3  3

2 x  1	 54.	 P1x 2  1
9 x4  4

9 
x3

0

y

x
11

 	

0

y

x2

1

55–62  ■  Local Extrema    Graph the polynomial in the given 
viewing rectangle. Find the coordinates of all local extrema. State 
each answer rounded to two decimal places. State the domain and 
range.

	55.	 y  x2  8x,    34, 124 by 350, 304
	56.	 y  x3  3x2,    32, 54 by 310, 104
	57.	 y  x3  12x  9,    35, 54 by 330, 304
	58.	 y  2x3  3x2  12x  32,    35, 54 by 360, 304
	59.	 y  x4  4x3,    35, 54 by 330, 304
	60.	 y  x4  18x2  32,    35, 54 by 3100, 1004
	61.	 y  3x5  5x3  3,    33, 34 by 35, 104
	62.	 y  x5  5x2  6,    33, 34 by 35, 104

63–72  ■  Number of Local Extrema    Graph the polynomial, and 
determine how many local maxima and minima it has.

	63.	 y  2x2  3x  5	 64.	 y  x3  12x

65.	 y  x3  x2  x	 66.	 y  6x3  3x  1

	67.	 y  x4  5x2  4

	68.	 y  1.2x5  3.75x4  7x3  15x2  18x

69.	 y  1x  2 2 5  32	 70.	 y  1x2  2 2 3
71.	 y  x8  3x4  x	 72.	 y  1

3 x7  17x2  7

73–78  ■  Families of Polynomials    Graph the family of polyno-
mials in the same viewing rectangle, using the given values of c. 
Explain how changing the value of c affects the graph.

73.	 P1x 2  cx3; c  1, 2, 5, 12

74.	 P1x 2  1x  c 2 4; c  1, 0, 1, 2

75.	 P1x 2  x4  c; c  1, 0, 1, 2

76.	 P1x 2  x3  cx; c  2, 0, 2, 4

77.	 P1x 2  x4  cx; c  0, 1, 8, 27

78.	 P1x 2  xc; c  1, 3, 5, 7

skills plus
	79.	 Intersection Points of Two Polynomials  

(a)	 On the same coordinate axes, sketch graphs (as accu-
rately as possible) of the functions

y  x3  2x2  x  2  and  y  x2  5x  2

(b)	 On the basis of your sketch in part (a), at how many 
points do the two graphs appear to intersect?

(c)	 Find the coordinates of all intersection points.

	80.	 Power Functions    Portions of the graphs of y  x2, y  x3, 
y  x4, y  x5, and y  x6 are plotted in the figures. Deter-
mine which function belongs to each graph.

y

0 x1

1

y

0 x1

1

	81.	 Odd and Even Functions    Recall that a function f is odd if 
f 1x 2  f 1x 2  or even if f 1x 2  f 1x 2  for all real x.

(a)	� Show that a polynomial P1x 2  that contains only odd 
powers of x is an odd function.

(b)	� Show that a polynomial P1x 2  that contains only even 
powers of x is an even function.

(c)	� Show that if a polynomial P1x 2  contains both odd and  
even powers of x, then it is neither an odd nor an even 
function.

(d)	 Express the function

P1x 2  x5  6x3  x2  2x  5

	 as the sum of an odd function and an even function.

	82.	 Number of Intercepts and Local Extrema  

(a) � How many x-intercepts and how many local extrema 
does the polynomial P1x 2  x3  4x have?

(b)	� How many x-intercepts and how many local extrema 
does the polynomial Q1x 2  x3  4x have?

(c)	� If a  0, how many x-intercepts and how many local 
extrema does each of the polynomials P1x 2  x3  ax 
and Q1x 2  x3  ax have? Explain your answer.
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268  CHAPTER 3  ■  Polynomial and Rational Functions

3.3  Dividing Polynomials
■ L ong Division of Polynomials  ■ S ynthetic Division  ■  The Remainder  
and Factor Theorems

So far in this chapter we have been studying polynomial functions graphically. In this 
section we begin to study polynomials algebraically. Most of our work will be concerned 
with factoring polynomials, and to factor, we need to know how to divide polynomials.

■ L ong Division of Polynomials
Dividing polynomials is much like the familiar process of dividing numbers. When we 
divide 38 by 7, the quotient is 5 and the remainder is 3. We write

38

7
 5 

3

7

To divide polynomials, we use long division, as follows.

Division Algorithm

If P1x 2  and D1x 2  are polynomials, with D1x 2 ? 0, then there exist unique 
polynomials Q1x 2  and R1x 2 , where R1x 2  is either 0 or of degree less than the 
degree of D1x 2 , such that

P1x 2
D1x 2  Q1x 2 

R1x 2
D1x 2       or      P1x 2  D1x 2 # Q1x 2  R1x 2

The polynomials P1x 2  and D1x 2  are called the dividend and divisor, respec-
tively, Q1x 2  is the quotient, and R1x 2  is the remainder.

Dividend Divisor Quotient

Remainder

Example 1  ■  Long Division of Polynomials
Divide 6x2  26x  12 by x  4. Express the result in each of the two forms shown 
in the above box.

Solution    The dividend is 6x2  26x  12, and the divisor is x  4. We begin by 
arranging them as follows.

x  4q6x2  26x  12

Next we divide the leading term in the dividend by the leading term in the divisor to 
get the first term of the quotient: 6x2/x  6x. Then we multiply the divisor by 6x and 
subtract the result from the dividend.

6x

x  4q6x2  26x  12

6x2  24x

2x  12

Dividend

Quotient

Remainder

Divisor

Divide leading terms: 
6x2

x
 6x

Multiply: 6x1x  4 2  6x2  24x

Subtract and “bring down” 12

83–86  ■  Local Extrema    These exercises involve local maxima 
and minima of polynomial functions. 

	83.	 (a) � Graph the function P1x 2  1x  1 2 1x  3 2 1x  4 2  and 
find all local extrema, correct to the nearest tenth.

(b)	 Graph the function

Q1x 2  1x  1 2 1x  3 2 1x  4 2  5

	� and use your answers to part (a) to find all local extrema, 
correct to the nearest tenth.

	84.	 (a) � Graph the function P1x 2  1x  2 2 1x  4 2 1x  5 2  and 
determine how many local extrema it has.

(b)	 If a  b  c, explain why the function

P1x 2  1x  a 2 1x  b 2 1x  c 2
	 must have two local extrema.

	85.	 Maximum Number of Local Extrema    What is the smallest 
possible degree that the polynomial whose graph is shown 
can have? Explain.

0 x

y

	86.	 Impossible Situation?    Is it possible for a polynomial to have 
two local maxima and no local minimum? Explain.

applications
	87.	 Market Research    A market analyst working for a small- 

appliance manufacturer finds that if the firm produces and  
sells x blenders annually, the total profit (in dollars) is

P1x 2  8x  0.3x2  0.0013x3  372

		  Graph the function P in an appropriate viewing rectangle and 
use the graph to answer the following questions.

(a)	� When just a few blenders are manufactured, the firm 
loses money (profit is negative). (For example, 
P110 2  263.3, so the firm loses $263.30 if it pro-
duces and sells only 10 blenders.) How many blenders 
must the firm produce to break even?

(b)	� Does profit increase indefinitely as more blenders are 
produced and sold? If not, what is the largest possible 
profit the firm could have?

	88.	 Population Change    The rabbit population on a small island 
is observed to be given by the function

P1 t 2  120t  0.4t4  1000

		  where t is the time (in months) since observations of the  
island began.

(a)	� When is the maximum population attained, and what is 
that maximum population?

(b)	� When does the rabbit population disappear from the island?

t

P

0

	89.	 Volume of a Box    An open box is to be constructed from a 
piece of cardboard 20 cm by 40 cm by cutting squares of side 
length x from each corner and folding up the sides, as shown 
in the figure.

(a)	 Express the volume V of the box as a function of x.

(b)	� What is the domain of V? (Use the fact that length and 
volume must be positive.)

(c)	� Draw a graph of the function V, and use it to estimate the 
maximum volume for such a box.

20 cm

40 cm

x
x

	90.	 Volume of a Box    A cardboard box has a 
square base, with each edge of the base 
having length x inches, as shown in the 
figure. The total length of all 12 edges of 
the box is 144 in.

(a)	� Show that the volume of the box is 
given by the function 
V1x 2  2x2118  x 2 .

(b)	� What is the domain of V? (Use the 
fact that length and volume must be 
positive.)

(c)	� Draw a graph of the function V and 
use it to estimate the maximum vol-
ume for such a box.

DiSCUSS  ■  DISCOVER  ■  PROVE  ■  WRITE
	91.	 DISCOVER:  Graphs of Large Powers    Graph the functions  

y  x2, y  x3, y  x4, and y  x5, for 1  x  1, on  
the same coordinate axes. What do you think the graph of  
y  x100 would look like on this same interval? What about  
y  x101? Make a table of values to confirm your answers.

	92.	 DISCUSS  ■  DISCOVER:  Possible Number of Local Extrema     
Is it possible for a third-degree polynomial to have exactly 
one local extremum? Can a fourth-degree polynomial have 
exactly two local extrema? How many local extrema can 
polynomials of third, fourth, fifth, and sixth degree have? 
(Think about the end behavior of such polynomials.) Now 
give an example of a polynomial that has six local extrema.

x
x
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SECTION 3.3  ■  Dividing Polynomials  269

3.3  Dividing Polynomials
■ L ong Division of Polynomials  ■ S ynthetic Division  ■  The Remainder  
and Factor Theorems

So far in this chapter we have been studying polynomial functions graphically. In this 
section we begin to study polynomials algebraically. Most of our work will be concerned 
with factoring polynomials, and to factor, we need to know how to divide polynomials.

■ L ong Division of Polynomials
Dividing polynomials is much like the familiar process of dividing numbers. When we 
divide 38 by 7, the quotient is 5 and the remainder is 3. We write

38

7
 5 

3

7

To divide polynomials, we use long division, as follows.

Division Algorithm

If P1x 2  and D1x 2  are polynomials, with D1x 2 ? 0, then there exist unique 
polynomials Q1x 2  and R1x 2 , where R1x 2  is either 0 or of degree less than the 
degree of D1x 2 , such that

P1x 2
D1x 2  Q1x 2 

R1x 2
D1x 2       or      P1x 2  D1x 2 # Q1x 2  R1x 2

The polynomials P1x 2  and D1x 2  are called the dividend and divisor, respec-
tively, Q1x 2  is the quotient, and R1x 2  is the remainder.

Dividend Divisor Quotient

Remainder

Example 1  ■  Long Division of Polynomials
Divide 6x2  26x  12 by x  4. Express the result in each of the two forms shown 
in the above box.

Solution    The dividend is 6x2  26x  12, and the divisor is x  4. We begin by 
arranging them as follows.

x  4q6x2  26x  12

Next we divide the leading term in the dividend by the leading term in the divisor to 
get the first term of the quotient: 6x2/x  6x. Then we multiply the divisor by 6x and 
subtract the result from the dividend.

6x

x  4q6x2  26x  12

6x2  24x

2x  12

Dividend

Quotient

Remainder

Divisor

Divide leading terms: 
6x2

x
 6x

Multiply: 6x1x  4 2  6x2  24x

Subtract and “bring down” 12
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270  CHAPTER 3  ■  Polynomial and Rational Functions

We repeat the process using the last line 2x  12 as the dividend.

	

6x  2oo

x  4q6x2  26x  12

6x2  24x

2x  12

2x  8

4 	

The division process ends when the last line is of lesser degree than the divisor. The 
last line then contains the remainder, and the top line contains the quotient. The result 
of the division can be interpreted in either of two ways:

6x2  26x  12

x  4
 6x  2 

4

x  4
                or                6x2  26x  12  1x  4 2 16x  2 2  4

Now Try Exercises 3 and 9	 ■

Example 2  ■  Long Division of Polynomials
Let P1x 2  8x4  6x2  3x  1 and D1x 2  2x2  x  2. Find polynomials Q1x 2  
and R1x 2  such that P1x 2  D1x 2 # Q1x 2  R1x 2 .
Solution    We use long division after first inserting the term 0x3 into the dividend to 
ensure that the columns line up correctly.

4x2  2x

2x2  x  2q8x4  0x3  6x2  3x  1

8x4  4x3  8x2

4x3  2x2  3x

4x3  2x2  4x

7x  1

  
Multiply divisor by 4x2

Subtract

Multiply divisor by 2x

Subtract

The process is complete at this point because 7x  1 is of lesser degree than the 
divisor 2x2  x  2. From the above long division we see that Q1x 2  4x2  2x and 
R1x 2  7x  1, so

8x4  6x2  3x  1  12x2  x  2 2 14x2  2x 2  17x  1 2
Now Try Exercise 19	 ■

■ S ynthetic Division
Synthetic division is a quick method of dividing polynomials; it can be used when the 
divisor is of the form x  c. In synthetic division we write only the essential parts of 
the long division. Compare the following long and synthetic divisions, in which we 
divide 2x3  7x2  5 by x  3. (We’ll explain how to perform the synthetic division 
in Example 3.)

Divide leading terms: 
2x

x
 2

Multiply:  21x  4 2  2x  8

Subtract

Divide leading terms: 
2x

x
 2

Multiply:  21x  4 2  2x  8

Subtract

Dividend Divisor Quotient

Dividend
Quotient Remainder Remainder

Divisor
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SECTION 3.3  ■  Dividing Polynomials  271

Quotient

Remainder

Quotient Remainder

3        2      7        0        5

		  6	 3	 9

	 2	 1	 3	 4
	 144424443

	 Long Division	 Synthetic Division

2x2  x  3

x  3q2x3  7x2  0x  5

2x3  6x2

x2  0x

x2  3x

3x  5

3x  9

4

Note that in synthetic division we abbreviate 2x3  7x2  5 by writing only the 
coefficients: 2    7    0    5, and instead of x  3, we simply write 3. (Writing 3 instead 
of 3 allows us to add instead of subtract, but this changes the sign of all the numbers 
that appear in the gold boxes.)

The next example shows how synthetic division is performed.

Example 3  ■  Synthetic Division
Use synthetic division to divide 2x3  7x2  5 by x  3.

Solution    We begin by writing the appropriate coefficients to represent the divisor 
and the dividend:

3    ∣    2        7        0        5

We bring down the 2, multiply 3  2  6, and write the result in the middle row. Then  
we add.

3 2

2

-7 0 5

6

-1       

Multiply: 3 ? 2  6

Add: 7  6  1

We repeat this process of multiplying and then adding until the table is complete.

3 2

2

−7

−3

0 5

6

−3−1 	

Multiply: 311 2  3

Add: 0  13 2  3

3 2

2

−7

−3 −9

0 5

6

−3 −4−1

Quotient
2x2 – x – 3

Remainder
–4

	

Multiply: 313 2  9

Add: 5  19 2  4

From the last line of the synthetic division we see that the quotient is 2x2  x  3 
and the remainder is 4. Thus

2x3  7x2  5  1x  3 2 12x2  x  3 2  4

Now Try Exercise 31	 ■

Dividend  
2x3  7x2  0x  5

Divisor x 2 3
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272  CHAPTER 3  ■  Polynomial and Rational Functions

■  The Remainder and Factor Theorems
The next theorem shows how synthetic division can be used to evaluate polynomials 
easily.

remainder theorem

If the polynomial P1x 2  is divided by x  c, then the remainder is the value P1c 2 .

Proof    If the divisor in the Division Algorithm is of the form x  c for some real 
number c, then the remainder must be a constant (since the degree of the remainder is 
less than the degree of the divisor). If we call this constant r, then

P1x 2  1x  c 2 # Q1x 2  r

Replacing x by c in this equation, we get P1c 2  1c  c 2 # Q1c 2  r  0  r  r, 
that is, P1c 2  is the remainder r.	 ■

Example 4  ■  �Using the Remainder Theorem to Find the Value  
of a Polynomial

Let P1x 2  3x5  5x4  4x3  7x  3.

(a)	 Find the quotient and remainder when P1x 2  is divided by x  2.

(b)	 Use the Remainder Theorem to find P12 2 .
SOLUTION

(a)	 �Since x  2  x  12 2 , the synthetic division for this problem takes the  
following form:

 	

2    ∣    3    5    4    0    7    3               ,

		  6	 2	 4	 8	 2

	 3	 1	 2	 4	 1	 5

	 	 The quotient is 3x4  x3  2x2  4x  1, and the remainder is 5.

(b)	 �By the Remainder Theorem, P12 2  is the remainder when P1x 2  is divided by  
x  122  x  2. From part (a) the remainder is 5, so P12 2  5.

Now Try Exercise 39	 ■

The next theorem says that zeros of polynomials correspond to factors. We used this 
fact in Section 3.2 to graph polynomials.

factor theorem

c is a zero of P if and only if x  c is a factor of P1x 2 .

Proof    If P1x 2  factors as P1x 2  1x  c 2Q1x 2 , then

P1c 2  1c  c 2Q1c 2  0 # Q1c 2  0

Conversely, if P1c 2  0, then by the Remainder Theorem

P1x 2  1x  c 2Q1x 2  0  1x  c 2Q1x 2
so x  c is a factor of P1x 2 .	 ■

Remainder is 5,  
so P(22) 5 5
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SECTION 3.3  ■  Dividing Polynomials  273

Example 5  ■  Factoring a Polynomial Using the Factor Theorem
Let P1x 2  x3  7x  6. Show that P11 2  0, and use this fact to factor P1x 2  
completely.

Solution    Substituting, we see that P11 2  13  7 # 1  6  0. By the Factor  
Theorem this means that x  1 is a factor of P1x 2 . Using synthetic or long division 
(shown in the margin), we see that

 P1x 2  x3  7x  6     Given polynomial

  1x  1 2 1x2  x  6 2     See margin

  1x  1 2 1x  2 2 1x  3 2     Factor quadratic x2  x  6

Now Try Exercises 53 and 57	 ■

Example 6  ■  Finding a Polynomial with Specified Zeros
Find a polynomial of degree four that has zeros 3, 0, 1, and 5, and the coefficient of 
x3 is 6.

Solution    By the Factor Theorem, x  13 2 , x  0, x  1, and x  5 must all be 
factors of the desired polynomial. Let

 P1x 2  1x  3 2 1x  0 2 1x  1 2 1x  5 2
  x4  3x3  13x2  15x

The polynomial P1x 2  is of degree 4 with the desired zeros, but the coefficient of x3 is 
3, not 6. Multiplication by a nonzero constant does not change the degree, so the 
desired polynomial is a constant multiple of P1x 2 . If we multiply P1x 2  by the con-
stant 2, we get

Q1x 2  2x4  6x3  26x2  30x

which is a polynomial with all the desired properties.The polynomial Q is graphed in 
Figure 1. Note that the zeros of Q correspond to the x-intercepts of the graph.

Now Try Exercises 63 and 67	 ■

1  ∣  1      0    7      6

		  1	 1	 6

	 1	 1	 6	 0

x2  x  6

x  1qx3  0x2  7x  6

x3  x2

x2  7x

x2  x

6x  6

6x  6

0

1

20

y

x_3 5

FIGURE 1 
Q1x 2  2x1x  3 2 1x  1 2 1x  5 2  
has zeros 3, 0, 1, and 5, and the  
coefficient of x3 is 6.

concepts
	 1.	 If we divide the polynomial P by the factor x  c and we 

obtain the equation P1x 2  1x  c 2Q1x 2  R1x 2 , then we say 

that x  c is the divisor, Q1x 2  is the    , and R1x 2  is 

the    .

	 2.	 (a)	� If we divide the polynomial P1x 2  by the factor x  c 
and we obtain a remainder of 0, then we know that c is a 

  of P.

(b)	� If we divide the polynomial P1x 2  by the factor x  c 
and we obtain a remainder of k, then we know that 

P1c 2      .

skills
3–8  ■  Division of Polynomials    Two polynomials P and D are 
given. Use either synthetic or long division to divide P1x 2  by 
D1x 2 , and express the quotient P1x 2/D1x 2  in the form

P1x 2
D1x 2  Q1x 2 

R1x 2
D1x 2

	 3.	 P1x 2  2x2  5x  7,    D1x 2  x  2

	 4.	 P1x 2  3x3  9x2  5x  1,    D1x 2  x  4

	 5.	 P1x 2  4x2  3x  7,    D1x 2  2x  1

	 6.	 P1x 2  6x3  x2  12x  5,    D1x 2  3x  4

	 7.	 P1x 2  2x4  x3  9x2,    D1x 2  x2  4

	 8.	 P1x 2  2x5  x3  2x2  3x  5,    D1x 2  x2  3x  1

3.3 E xercises
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274  CHAPTER 3  ■  Polynomial and Rational Functions

9–14  ■  Division of Polynomials    Two polynomials P and D are 
given. Use either synthetic or long division to divide P1x 2  by 
D1x 2 , and express P in the form 

P1x 2  D1x 2 # Q1x 2  R1x 2
	 9.	 P1x 2  x3  2x  6,    D1x 2  x  1

	10.	 P1x 2  x4  2x3  10x,    D1x 2  x  3

	11.	 P1x 2  2x3  3x2  2x,    D1x 2  2x  3

	12.	 P1x 2  4x3  7x  9,    D1x 2  2x  1

	13.	 P1x 2  8x4  4x3  6x2,    D1x 2  2x2  1

	14.	 P1x 2  27x5  9x4  3x2  3,    D1x 2  3x2  3x  1

15–24  ■  Long Division of Polynomials    Find the quotient and 
remainder using long division.

	15.	
x2  3x  7

x  2
	 16.	

x3  2x2  x  1

x  3

	17.	
4x3  2x2  2x  3

2x  1
	 18.	

x3  3x2  4x  3

3x  6

	19.	
x3  2x  1

x2  x  3
	 20.	

x4  3x3  x  2

x2  5x  1

	21.	
6x3  2x2  22x

2x2  5
	 22.	

9x2  x  5

3x2  7x

	23.	
x6  x4  x2  1

x2  1
	 24.	

2x5  7x4  13

4x2  6x  8

25–38  ■  Synthetic Division of Polynomials    Find the quotient 
and remainder using synthetic division.

	25.	
2x2  5x  3

x  3
	 26.	

x2  x  4

x  1

	27.	
3x2  x

x  1
	 28.	

4x2  3

x  2

	29.	
x3  2x2  2x  1

x  2
	 30.	

3x3  12x2  9x  1

x  5

	31.	
x3  8x  2

x  3
	 32.	

x4  x3  x2  x  2

x  2

	33.	
x5  3x3  6

x  1
	 34.	

x3  9x2  27x  27

x  3

	35.	
2x 3  3x2  2x  1

x  1
2

	36.	
6x4  10x 3  5x2  x  1

x  2
3

	37.	
x 3  27

x  3
	 38.	

x4  16

x  2

39–51  ■  Remainder Theorem    Use synthetic division and the 
Remainder Theorem to evaluate P1c 2 .
	39.	 P1x 2  4x2  12x  5,    c  1

	40.	 P1x 2  2x2  9x  1,    c  1
2

	41.	 P1x 2  x3  3x2  7x  6,    c  2

	42.	 P1x 2  x3  x2  x  5,    c  1

	43.	 P1x 2  x3  2x2  7,    c  2

	44.	 P1x 2  2x3  21x2  9x  200,    c  11

	45.	 P1x 2  5x4  30x3  40x2  36x  14,    c  7

	46.	 P1x 2  6x5  10x3  x  1,    c  2

	47.	 P1x 2  x7  3x2  1,    c  3

	48.	 P1x 2  2x6  7x5  40x4  7x2  10x  112,    c  3

	49.	 P1x 2  3x3  4x2  2x  1,    c  2
3

	50.	 P1x 2  x3  x  1,    c  1
4

	51.	 P1x 2  x3  2x2  3x  8,    c  0.1

	52.	 Remainder Theorem    Let

 P1x 2  6x7  40x6  16x5  200x4

  60x3  69x2  13x  139

		  Calculate P17 2  by (a) using synthetic division and (b) substi-
tuting x  7 into the polynomial and evaluating directly.

53–56  ■  Factor Theorem    Use the Factor Theorem to show that 
x  c is a factor of P1x 2  for the given value(s) of c.

	53.	 P1x 2  x3  3x2  3x  1,    c  1

	54.	 P1x 2  x3  2x2  3x  10,    c  2

	55.	 P1x 2  2x3  7x2  6x  5,    c  1
2

	56.	 P1x 2  x4  3x3  16x2  27x  63,    c  3, 3

57–62  ■  Factor Theorem    Show that the given value(s) of c are 
zeros of P1x 2 , and find all other zeros of P1x 2 .
	57.	 P1x 2  x3  2x2  9x  18,    c  2

	58.	 P1x 2  x3  5x2  2x  10,    c  5

	59.	 P1x 2  x3  x2  11x  15,    c  3

	60.	 P1x 2  3x4  x3  21x2  11x  6,    c  2, 13

	61.	 P1x 2  3x4  8x3  14x2  31x  6,    c  2, 3

	62.	 P1x 2  2x4  13x3  7x2  37x  15,    c  1, 3

63–66  ■  Finding a Polynomial with Specified Zeros    Find a 
polynomial of the specified degree that has the given zeros.

	63.	 Degree 3;    zeros 1, 1, 3

	64.	 Degree 4;    zeros 2, 0, 2, 4

	65.	 Degree 4;    zeros 1, 1, 3, 5

	66.	 Degree 5;    zeros 2, 1, 0, 1, 2

67–70  ■  Polynomials with Specified Zeros    Find a polynomial 
of the specified degree that satisfies the given conditions.

	67.	 Degree 4;  zeros 2, 0, 1, 3;  coefficient of x3 is 4

	68.	 Degree 4;  zeros 1, 0, 2, 1
2;  coefficient of x3 is 3

	69.	 Degree 4;  zeros 1, 1, !2;  integer coefficients and  
constant term 6

	70.	 Degree 5;  zeros 2, 1, 2, !5;  integer coefficients and 
constant term 40

3.4  Real Zeros of Polynomials
■  Rational Zeros of Polynomials  ■  Descartes’ Rule of Signs  ■ U pper and Lower  
Bounds Theorem  ■ U sing Algebra and Graphing Devices to Solve Polynomial  
Equations

The Factor Theorem tells us that finding the zeros of a polynomial is really the same 
thing as factoring it into linear factors. In this section we study some algebraic methods 
that help us to find the real zeros of a polynomial and thereby factor the polynomial. 
We begin with the rational zeros of a polynomial.

■  Rational Zeros of Polynomials
To help us understand the next theorem, let’s consider the polynomial

 P1x 2  1x  2 2 1x  3 2 1x  4 2         Factored form

  x3  x2  14x  24         Expanded form

From the factored form we see that the zeros of P are 2, 3, and 4. When the polyno-
mial is expanded, the constant 24 is obtained by multiplying 12 2  13 2  4. This 
means that the zeros of the polynomial are all factors of the constant term. The follow-
ing generalizes this observation.
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skills plus
71–74  ■  Finding a Polynomial from a Graph    Find the polyno-
mial of the specified degree whose graph is shown.

	71.	 Degree 3	 72.	 Degree 3

		

0

y

x1

1

	

0

y

x1

1

	73.	 Degree 4	 74.	 Degree 4

		
0

y

x1

1

	

0

y

x1

1

DiSCUSS  ■  DISCOVER  ■  PROVE  ■  WRITE
	75.	 DISCUSS:  Impossible Division?    Suppose you were asked to 

solve the following two problems on a test:
A.	� Find the remainder when 6x1000  17x562  12x  26 is 

divided by x  1.
B.	 Is x  1 a factor of x567  3x400  x9  2?

		  Obviously, it’s impossible to solve these problems by divid-
ing, because the polynomials are of such large degree. Use 
one or more of the theorems in this section to solve these 
problems without actually dividing.

	76.	 DISCOVER: N ested Form of a Polynomial    Expand Q to 
prove that the polynomials P and Q are the same.

 P1x 2  3x4  5x3  x2  3x  5

 Q1x 2  1113x  5 2x  1 2x  3 2x  5

		  Try to evaluate P12 2  and Q12 2  in your head, using the  
forms given. Which is easier? Now write the polynomial 
R1x 2  x5  2x4  3x3  2x2  3x  4 in “nested” form, 
like the polynomial Q. Use the nested form to find R13 2  in  
your head.

		      Do you see how calculating with the nested form follows 
the same arithmetic steps as calculating the value of a poly-
nomial using synthetic division?

3.4  Real Zeros of Polynomials
■  Rational Zeros of Polynomials  ■  Descartes’ Rule of Signs  ■ U pper and Lower  
Bounds Theorem  ■ U sing Algebra and Graphing Devices to Solve Polynomial  
Equations

The Factor Theorem tells us that finding the zeros of a polynomial is really the same 
thing as factoring it into linear factors. In this section we study some algebraic methods 
that help us to find the real zeros of a polynomial and thereby factor the polynomial. 
We begin with the rational zeros of a polynomial.

■  Rational Zeros of Polynomials
To help us understand the next theorem, let’s consider the polynomial

 P1x 2  1x  2 2 1x  3 2 1x  4 2         Factored form

  x3  x2  14x  24         Expanded form

From the factored form we see that the zeros of P are 2, 3, and 4. When the polyno-
mial is expanded, the constant 24 is obtained by multiplying 12 2  13 2  4. This 
means that the zeros of the polynomial are all factors of the constant term. The follow-
ing generalizes this observation.
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276  CHAPTER 3  ■  Polynomial and Rational Functions

rational zeros theorem

If the polynomial P1x 2  an  
x 

 

n  an1x 
n1  . . .  a1x  a0 has integer 

coefficients (where an ? 0 and a0 ? 0), then every rational zero of P is of the form

p
q

where p and q are integers and 

p is a factor of the constant coefficient a0

q is a factor of the leading coefficient an

Proof    If p/q is a rational zero, in lowest terms, of the polynomial P, then we have

 an a
p
q
b

n

 an1 a
p
q
b

n1

 . . .  a1 a
p
q
b  a0  0

 an  
pn  an1  

pn1q  . . .  a1pqn1  a0q
n  0     Multiply by qn

 p1an  
pn1  an1  

pn2q  . . .  a1q
n1 2  a0q

n    �
Subtract a0qn  
and factor LHS

Now p is a factor of the left side, so it must be a factor of the right side as well. Since 
p/q is in lowest terms, p and q have no factor in common, so p must be a factor of a0. 
A similar proof shows that q is a factor of an.	 ■

We see from the Rational Zeros Theorem that if the leading coefficient is 1 or 1, 
then the rational zeros must be factors of the constant term.

Example 1  ■  Using the Rational Zeros Theorem
Find the rational zeros of P1x 2  x3  3x  2.

Solution    Since the leading coefficient is 1, any rational zero must be a divisor of 
the constant term 2. So the possible rational zeros are 1 and 2. We test each of 
these possibilities.

 P11 2  11 2 3  311 2  2  0

 P11 2  11 2 3  311 2  2  4

 P12 2  12 2 3  312 2  2  4

 P12 2  12 2 3  312 2  2  0

The rational zeros of P are 1 and 2.

Now Try Exercise 15	 ■

Discovery Project

Zeroing in on a Zero

We have learned how to find the zeros of a polynomial function algebraically 
and graphically. In this project we investigate a numerical method for finding 
the zeros of a polynomial. With this method we can approximate the zeros of a 
polynomial to as many decimal places as we wish. The method involves finding 
smaller and smaller intervals that zoom in on a zero of a polynomial. You can 
find the project at www.stewartmath.com.

0.010 0.001
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The following box explains how we use the Rational Zeros Theorem with synthetic 
division to factor a polynomial.

Finding the Rational Zeros of a Polynomial

1.	 �List Possible Zeros.    List all possible rational zeros, using the Rational 
Zeros Theorem.

2.	 �Divide.    Use synthetic division to evaluate the polynomial at each of the 
candidates for the rational zeros that you found in Step 1. When the 
remainder is 0, note the quotient you have obtained.

3.	� Repeat.    Repeat Steps 1 and 2 for the quotient. Stop when you reach a 
quotient that is quadratic or factors easily, and use the quadratic formula or 
factor to find the remaining zeros.

Example 2  ■  Finding Rational Zeros
Write the polynomial P1x 2  2x3  x2  13x  6 in factored form, and find all its 
zeros.

Solution    By the Rational Zeros Theorem the rational zeros of P are of the form

possible rational zero of P 
factor of constant term

factor of leading coefficient

The constant term is 6 and the leading coefficient is 2, so

possible rational zero of P 
factor of 6

factor of 2

The factors of 6 are 1, 2, 3, 6, and the factors of 2 are 1, 2. Thus the  
possible rational zeros of P are


1

1
, 

2

1
, 

3

1
, 

6

1
, 

1

2
, 

2

2
, 

3

2
, 

6

2

Simplifying the fractions and eliminating duplicates, we get the following list of  
possible rational zeros:

1, 2, 3, 6, 
1

2
, 

3

2

To check which of these possible zeros actually are zeros, we need to evaluate  
P at each of these numbers. An efficient way to do this is to use synthetic  
division.

	 Test whether 1 is a zero	 Test whether 2 is a zero

	 1    ∣  2    11    13    16	 2    ∣  2    11    13    6

			   2	 3	 10		  4	 10	 6

		  2	 3	 10	 4	 2	 5	 3	 0

Li
br

ar
y 

of
 C

on
gr

es
s 

Pr
in

ts
 a

nd
 P

ho
to

gr
ap

hs
 

Di
vi

si
on

Evariste Galois (1811–1832) is one 
of the very few mathematicians to have 
an entire theory named in his honor. Not 
yet 21 when he died, he completely set-
tled the central problem in the theory of 
equations by describing a criterion that 
reveals whether a polynomial equation 
can be solved by algebraic operations. 
Galois was one of the greatest mathema-
ticians in the world at that time, although 
no one knew it but him. He repeatedly 
sent his work to the eminent mathemati-
cians Cauchy and Poisson, who either lost 
his letters or did not understand his 
ideas. Galois wrote in a terse style and 
included few details, which probably 
played a role in his failure to pass the 
entrance exams at the Ecole Polytech-
nique in Paris. A political radical, Galois 
spent several months in prison for his 
revolutionary activities. His brief life 
came to a tragic end when he was killed 
in a duel over a love affair. The night 
before his duel, fearing that he would 
die, Galois wrote down the essence of his 
ideas and entrusted them to his friend 
Auguste Chevalier. He concluded by writ-
ing “there will, I hope, be people who will 
find it to their advantage to decipher all 
this mess.” The mathematician Camille 
Jordan did just that, 14 years later.

Remainder is not 0, 
so 1 is not a zero

Remainder is 0,  
so 2 is a zero
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278  CHAPTER 3  ■  Polynomial and Rational Functions

From the last synthetic division we see that 2 is a zero of P and that P factors as

 P1x 2  2x3  x2  13x  6         Given polynomial

  1x  2 2 12x2  5x  3 2         From synthetic division

  1x  2 2 12x  1 2 1x  3 2         Factor 2x2  5x  3

From the factored form we see that the zeros of P are 2,  1 

2 , and –3.

Now Try Exercise 29	 ■

Example 3  ■  �Using the Rational Zeros Theorem  
and the Quadratic Formula

Let P1x 2  x4  5x3  5x2  23x  10.

(a)	 Find the zeros of P.      (b)  Sketch a graph of P.

SOLUTION

(a)	 �The leading coefficient of P is 1, so all the rational zeros are integers: They are 
divisors of the constant term 10. Thus the possible candidates are

1, 2, 5, 10

	 �	 Using synthetic division (see the margin), we find that 1 and 2 are not zeros but 
that 5 is a zero and that P factors as

x4  5x3  5x2  23x  10  1x  5 2 1x3  5x  2 2
	 �	 We now try to factor the quotient x3  5x  2. Its possible zeros are the divisors 

of 2, namely,

1, 2

	 �	 Since we already know that 1 and 2 are not zeros of the original polynomial P, 
we don’t need to try them again. Checking the remaining candidates, 1 and 2, 
we see that 2 is a zero (see the margin), and P factors as

 x4  5x3  5x2  23x  10  1x  5 2 1x3  5x  2 2
  1x  5 2 1x  2 2 1x2  2x  1 2

	 	 Now we use the Quadratic Formula to obtain the two remaining zeros of P:

x 
2  "12 2 2  411 2 11 2

2
 1  !2

	 	 The zeros of P are 5, 2, 1  !2, and 1  !2.

(b)	 �Now that we know the zeros of P, we can use the methods of Section 3.2 to sketch 
the graph. If we want to use a graphing calculator instead, knowing the zeros allows 
us to choose an appropriate viewing rectangle—one that is wide enough to contain 
all the x-intercepts of P. Numerical approximations to the zeros of P are

5, 2, 2.4, 0.4

	 �	� So in this case we choose the rectangle 33, 64 by 350, 504 and draw the graph 
shown in Figure 1.

Now Try Exercises 45 and 55	 ■

■  Descartes’ Rule of Signs
In some cases, the following rule—discovered by the French philosopher and mathema-
tician René Descartes around 1637 (see page 201)—is helpful in eliminating candidates 
from lengthy lists of possible rational roots. To describe this rule, we need the concept 

1    ∣   1    5      5       23       10

		  1	 4	 9	 14

	1	 4	 9	 14	 24

2    ∣   1	 5	 5	 23	 10

		  2	 6	 22	 2

	1	 3	 11	 1	 12

5    ∣   1	 5	 5	 23	 10

		  5	 0	 25	 10

	1	 0	 5	 2	 0

2    ∣  1    0    5    2

		  2	 4	 2

	 1	 2	 1	 0

50

_50

_3 6

Figure 1 
P1x 2  x4  5x3  5x2  23x  10
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SECTION 3.4  ■  Real Zeros of Polynomials  279

of variation in sign. If P1x 2  is a polynomial with real coefficients, written with descend-
ing powers of x (and omitting powers with coefficient 0), then a variation in sign oc-
curs whenever adjacent coefficients have opposite signs. For example,

P1x 2  5x7  3x5  x4  2x2  x  3

has three variations in sign.

Descartes’ Rule of Signs

Let P be a polynomial with real coefficients.

1.	� The number of positive real zeros of P1x 2  either is equal to the number of 
variations in sign in P1x 2  or is less than that by an even whole number.

2.	� The number of negative real zeros of P1x 2  either is equal to the number of 
variations in sign in P1x 2  or is less than that by an even whole number.

In Descartes’ Rule of Signs a zero with multiplicity m is counted m times. For ex-
ample, the polynomial P1x 2  x2  2x  1 has two sign changes and has the positive 
zero x  1. But this zero is counted twice because it has multiplicity 2.

Example 4  ■  Using Descartes’ Rule
Use Descartes’ Rule of Signs to determine the possible number of positive and nega-
tive real zeros of the polynomial

P1x 2  3x6  4x5  3x3  x  3

Solution    The polynomial has one variation in sign, so it has one positive zero. Now

 P1x 2  31x 2 6  41x 2 5  31x 2 3  1x 2  3

  3x6  4x5  3x3  x  3

So P1x 2  has three variations in sign. Thus P1x 2  has either three or one negative 
zero(s), making a total of either two or four real zeros.

Now Try Exercise 63	 ■

■ U pper and Lower Bounds Theorem
We say that a is a lower bound and b is an upper bound for the zeros of a polynomial 
if every real zero c of the polynomial satisfies a  c  b. The next theorem helps us to 
find such bounds for the zeros of a polynomial.

The Upper and Lower Bounds Theorem

Let P be a polynomial with real coefficients.

1.	� If we divide P1x 2  by x  b (with b  0) using synthetic division and if the 
row that contains the quotient and remainder has no negative entry, then b is 
an upper bound for the real zeros of P.

2.	� If we divide P1x 2  by x  a (with a  0) using synthetic division and if the 
row that contains the quotient and remainder has entries that are alternately 
nonpositive and nonnegative, then a is a lower bound for the real zeros of P.

Multiplicity is discussed on page 263.

Polynomial
Variations  

in sign

x2  4x  1 0
2x3  x  6 1

x4  3x2  x  4 2
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280  CHAPTER 3  ■  Polynomial and Rational Functions

A proof of this theorem is suggested in Exercise 109. The phrase “alternately non-
positive and nonnegative” simply means that the signs of the numbers alternate, with 0 
considered to be positive or negative as required.

Example 5  ■  Upper and Lower Bounds for the Zeros of a Polynomial
Show that all the real zeros of the polynomial P1x 2  x4  3x2  2x  5 lie 
between 3 and 2.

Solution    We divide P1x 2  by x  2 and x  3 using synthetic division:

	 2    ∣    1      0    3      2    5	 3    ∣    1    0    3      2    5

		  2	 4	 2	 8			   3	 9	 18	 48

	 1	 2	 1	 4	 3		  1	 3	 6	 16	 43	

�Entries  
alternate  
in sign

�All entries 
nonnegative

By the Upper and Lower Bounds Theorem 3 is a lower bound and 2 is an upper 
bound for the zeros. Since neither 3 nor 2 is a zero (the remainders are not 0 in the 
division table), all the real zeros lie between these numbers.

Now Try Exercise 69	 ■

Example 6  ■  A Lower Bound for the Zeros of a Polynomial
Show that all the real zeros of the polynomial P1x 2  x4  4x3  3x2  7x  5 are 
greater than or equal to 4.

Solution    We divide P1x 2  by x  4 using synthetic division:

	 4    ∣  1        4        3          7        5

		  4	 0	 12	 20

	 1	 0	 3	 5	 15

Since 0 can be considered either nonnegative or nonpositive, the entries alternate in 
sign. So 4 is a lower bound for the real zeros of P.

Now Try Exercise 73	 ■

Example 7  ■  Factoring a Fifth-Degree Polynomial
Factor completely the polynomial

P1x 2  2x5  5x4  8x3  14x2  6x  9

Solution    The possible rational zeros of P are  
1
2, 1,  

3
2, 3,  

9
2, and 9. We 

check the positive candidates first, beginning with the smallest:

	
1
2    ∣    2      5    8      14        6        9	 1    ∣     2  5    8    14        6      9

	 1	 3	 5
2	 33

4 	 9
8		  2	 7	 1	 15	 9

	 2	 6	 5	 33
2 	 9

4	 63
8 	 2	 7	 1	 15	 9	 01

2 is not a 
zero P11 2  0

_3 20

Lower
bound

Upper
bound

All zeros
are between
_3 and 2

Alternately  
nonnegative and 
nonpositive
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SECTION 3.4  ■  Real Zeros of Polynomials  281

So 1 is a zero, and P1x 2  1x  1 2 12x4  7x3  x2  15x  9 2 . We continue by 
factoring the quotient. We still have the same list of possible zeros except that 1

2 has 
been eliminated.

	 1    ∣    2    7    1    15      9	 3
2    ∣  2    7    1    15    9

		  2	 9	 8	 7			   3	 15	 21	 9

	 2	 9	 8	 7	 16		  2	 10	 14	 6	 0	 PA32 B  0,  
all entries 
nonnegative

1 is not a 
zero

We see that 3
2 is both a zero and an upper bound for the zeros of P1x 2 , so we do not 

need to check any further for positive zeros, because all the remaining candidates are 
greater than 3

2.

 P1x 2  1x  1 2 1x  3
2 2 12x3  10x2  14x  6 2         From synthetic division

  1x  1 2 12x  3 2 1x3  5x2  7x  3 2       
�Factor 2 from last factor,  
multiply into second factor

By Descartes’ Rule of Signs, x3  5x2  7x  3 has no positive zero, so its only 
possible rational zeros are 1 and 3:

	     1   ∣    1        5        7        3

		  1	 4	 3

	 1	 4	 3	 0

Therefore,

 P1x 2  1x  1 2 12x  3 2 1x  1 2 1x2  4x  3 2         From synthetic division

  1x  1 2 12x  3 2 1x  1 2 21x  3 2         Factor quadratic

This means that the zeros of P are 1, 3
2, 1, and 3. The graph of the polynomial is 

shown in Figure 2.

Now Try Exercise 81	 ■

■ U sing Algebra and Graphing Devices  
to Solve Polynomial Equations

In Section 1.11 we used graphing devices to solve equations graphically. We can now 
use the algebraic techniques that we’ve learned to select an appropriate viewing rect-
angle when solving a polynomial equation graphically.

Example 8  ■  Solving a Fourth-Degree Equation Graphically
Find all real solutions of the following equation, rounded to the nearest tenth:

3x4  4x3  7x2  2x  3  0

Solution    To solve the equation graphically, we graph

P1x 2  3x4  4x3  7x2  2x  3

First we use the Upper and Lower Bounds Theorem to find two numbers between 
which all the solutions must lie. This allows us to choose a viewing rectangle that is 
certain to contain all the x-intercepts of P. We use synthetic division and proceed by 
trial and error.

P11 2  0

We use the Upper and Lower Bounds 
Theorem to see where the solutions can  
be found.

9

40

_20

_4 2

Figure 2 

P1x 2 2x5  5x4  8x3  14x2  6x  9

 1x  1 2 12x  3 2 1x  1 2 21x  3 2
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282  CHAPTER 3  ■  Polynomial and Rational Functions

To find an upper bound, we try the whole numbers, 1, 2, 3, . . . , as potential candi-
dates. We see that 2 is an upper bound for the solutions:

2    ∣    3        4        7        2        3

		  6	 20	 26	 48

	 3	 10	 13	 24	 45

Now we look for a lower bound, trying the numbers 1, 2, and 3 as potential 
candidates. We see that 3 is a lower bound for the solutions:

	 3    ∣  3        4      7        2        3

			   9	 15	 24	 78

		  3	 5	 8	 26	 75

Thus all the solutions lie between 3 and 2. So the viewing rectangle 33, 24 by  
320, 204 contains all the x-intercepts of P. The graph in Figure 3 has two x-intercepts, 
one between 3 and 2 and the other between 1 and 2. Zooming in, we find that the 
solutions of the equation, to the nearest tenth, are 2.3 and 1.3.

Now Try Exercise 95	 ■

Example 9  ■  Determining the Size of a Fuel Tank
A fuel tank consists of a cylindrical center section that is 4 ft long and two hemi-
spherical end sections, as shown in Figure 4. If the tank has a volume of 100 ft3, what 
is the radius r shown in the figure, rounded to the nearest hundredth of a foot?

Solution    Using the volume formula listed on the inside front cover of this book, we 
see that the volume of the cylindrical section of the tank is

p # r 
2 # 4

The two hemispherical parts together form a complete sphere whose volume is
4
3 pr 

3

Because the total volume of the tank is 100 ft3, we get the following equation:
4
3 pr3  4pr 

2  100

A negative solution for r would be meaningless in this physical situation, and by 
substitution we can verify that r  3 leads to a tank that is over 226 ft3 in volume, 
much larger than the required 100 ft3. Thus we know the correct radius lies some-
where between 0 and 3 ft, so we use a viewing rectangle of 30, 34 by 350, 1504 to graph 
the function y  4

3 px3  4px 
2, as shown in Figure 5. Since we want the value of this 

function to be 100, we also graph the horizontal line y  100 in the same viewing 
rectangle. The correct radius will be the x-coordinate of the point of intersection of 
the curve and the line. Using the cursor and zooming in, we see that at the point  
of intersection x  2.15, rounded to two decimal places. Thus the tank has a radius  
of about 2.15 ft.

Now Try Exercise 99	 ■

Note that we also could have solved the equation in Example 9 by first writing it as
4
3 pr3  4pr 

2  100  0

and then finding the x-intercept of the function y  4
3 px3  4px 

2  100.

All  
positive

Entries  
alternate  
in sign

Volume of a cylinder: V  pr 2h

Volume of a sphere: V  4
3  pr3

20

_20

_3 2

Figure 3 

y  3x4  4x3  7x2  2x  3

150

50
0 3

Figure 5   

y  4
3 px3  4px 

2 and y  100

Figure 4

r

4 ft

rr

4 ft

r
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SECTION 3.4  ■  Real Zeros of Polynomials  283

concepts
	 1.	 If the polynomial function

P 1x 2  anx n  an1x n1  . . .  a1x  a0

		  has integer coefficients, then the only numbers that  
could possibly be rational zeros of P are all of the  

form 
p

q
, where p is a factor of   and q is a  

factor of    . The possible rational zeros of 
P 1x 2  6x3  5x2  19x  10 are 

   .

	 2.	 Using Descartes’ Rule of Signs, we can tell that the  
polynomial P 1x 2  x5  3x4  2x3  x2  8x  8 has 

   ,    , or   positive real zeros and 

  negative real zeros.

	 3.	 True or False? If c is a real zero of the polynomial P, then all 
the other zeros of P are zeros of P1x 2/ 1x  c 2 .

	 4.	 True or False? If a is an upper bound for the real zeros of the 
polynomial P, then a is necessarily a lower bound for the 
real zeros of P.

skills
5–10  ■  Possible Rational Zeros    List all possible rational zeros 
given by the Rational Zeros Theorem (but don’t check to see 
which actually are zeros).

	 5.	 P1x 2  x3  4x2  3

	 6.	 Q1x 2  x4  3x3  6x  8

	 7.	 R1x 2  2x5  3x3  4x2  8

	 8.	 S1x 2  6x4  x2  2x  12

	 9.	 T1x 2  4x4  2x2  7

	10.	 U1x 2  12x5  6x3  2x  8

11–14  ■  Possible Rational Zeros    A polynomial function P and 
its graph are given. (a) List all possible rational zeros of P given 
by the Rational Zeros Theorem. (b) From the graph, determine 
which of the possible rational zeros actually turn out to be zeros.

	11.	 P1x 2  5x3  x2  5x  1

0 1

y

x

1

	12.	 P1x 2  3x3  4x2  x  2

0

y

x1

1

	13.	 P1x 2  2x4  9x3  9x2  x  3

0

y

x1

1

14.	 P1x 2  4x4  x3  4x  1

0

y

x1

1

15–28  ■  Integer Zeros    All the real zeros of the given polyno-
mial are integers. Find the zeros, and write the polynomial in fac-
tored form.

	15.	 P1x 2  x3  2x2  13x  10

	16.	 P1x 2  x3  4x2  19x  14

17.	 P1x 2  x3  3x2  4

18.	 P1x 2  x3  3x  2

19.	 P1x 2  x3  6x2  12x  8

20.	 P1x 2  x3  12x2  48x  64

	21.	 P1x 2  x3  19x  30

	22.	 P1x 2  x3  11x2  8x  20

3.4 E xercises
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284  CHAPTER 3  ■  Polynomial and Rational Functions

23.	 P1x 2  x3  3x2  x  3

24.	 P1x 2  x3  4x2  11x  30

25.	 P1x 2  x4  5x2  4

26.	 P1x 2  x4  2x3  3x2  8x  4

27.	 P1x 2  x4  6x3  7x2  6x  8

28.	 P1x 2  x4  x3  23x2  3x  90

29–44  ■  Rational Zeros    Find all rational zeros of the polyno-
mial, and write the polynomial in factored form.

29.	 P1x 2  4x4  37x2  9

	30.	 P1x 2  6x4  23x3  13x2  32x  16

31.	 P1x 2  3x4  10x3  9x2  40x  12

32.	 P1x 2  2x3  7x2  4x  4

33.	 P1x 2  4x3  4x2  x  1

34.	 P1x 2  2x3  3x2  2x  3

35.	 P1x 2  4x3  7x  3

36.	 P1x 2  12x3  25x2  x  2

	37.	 P1x 2  24x3  10x2  13x  6

38.	 P1x 2  12x3  20x2  x  3

39.	 P1x 2  2x4  7x3  3x2  8x  4

40.	 P1x 2  6x4  7x3  12x2  3x  2

41.	 P1x 2  x5  3x4  9x3  31x2  36

42.	 P1x 2  x5  4x4  3x3  22x2  4x  24

43.	 P1x 2  3x5  14x4  14x3  36x2  43x  10

44.	 P1x 2  2x6  3x5  13x4  29x3  27x2  32x  12

45–54  ■  Real Zeros of a Polynomial    Find all the real zeros of 
the polynomial. Use the Quadratic Formula if necessary, as in 
Example 3(a).

45.	 P1x 2  3x3  5x2  2x  4

	46.	 P1x 2  3x4  5x3  16x2  7x  15

47.	 P1x 2  x4  6x3  4x2  15x  4

48.	 P1x 2  x4  2x3  2x2  3x  2

49.	 P1x 2  x4  7x3  14x2  3x  9

50.	 P1x 2  x5  4x4  x3  10x2  2x  4

51.	 P1x 2  4x3  6x2  1

52.	 P1x 2  3x3  5x2  8x  2

53.	 P1x 2  2x4  15x3  17x2  3x  1

54.	 P1x 2  4x5  18x4  6x3  91x2  60x  9

55–62  ■  Real Zeros of a Polynomial    A polynomial P is given. 
(a) Find all the real zeros of P. (b) Sketch a graph of P.

55.	 P1x 2  x3  3x2  4x  12

56.	 P1x 2  x3  2x2  5x  6

57.	 P1x 2  2x3  7x2  4x  4

58.	 P1x 2  3x3  17x2  21x  9

59.	 P1x 2  x4  5x3  6x2  4x  8

60.	 P1x 2  x4  10x2  8x  8

61.	 P1x 2  x5  x4  5x3  x2  8x  4

62.	 P1x 2  x5  x4  6x3  14x2  11x  3

63–68  ■  Descartes’ Rule of Signs    Use Descartes’ Rule of Signs 
to determine how many positive and how many negative real 
zeros the polynomial can have. Then determine the possible total 
number of real zeros.

63.	 P1x 2  x3  x2  x  3

64.	 P1x 2  2x3  x2  4x  7

65.	 P1x 2  2x6  5x4  x3  5x  1

66.	 P1x 2  x4  x3  x2  x  12

67.	 P1x 2  x5  4x3  x2  6x

68.	 P1x 2  x8  x5  x4  x3  x2  x  1

69–76  ■  Upper and Lower Bounds    Show that the given values 
for a and b are lower and upper bounds for the real zeros of the 
polynomial.

69.	 P1x 2  2x3  5x2  x  2; a  3, b  1

70.	 P1x 2  x4  2x3  9x2  2x  8; a  3, b  5

71.	 P1x 2  8x3  10x2  39x  9; a  3, b  2

72.	 P1x 2  3x4  17x3  24x2  9x  1; a  0, b  6

73.	 P1x 2  x4  2x3  3x2  5x  1; a  2, b  1

74.	 P1x 2  x4  3x3  4x2  2x  7; a  4, b  2

75.	 P1x 2  2x4  6x3  x2  2x  3; a  1, b  3

76.	 P1x 2  3x4  5x3  2x2  x  1; a  1, b  2

77–80  ■  Upper and Lower Bounds    Find integers that are upper 
and lower bounds for the real zeros of the polynomial.

77.	 P1x 2  x3  3x2  4

78.	 P1x 2  2x3  3x2  8x  12

79.	 P1x 2  x4  2x3  x2  9x  2

80.	 P1x 2  x5  x4  1

81–86  ■  Zeros of a Polynomial    Find all rational zeros of the 
polynomial, and then find the irrational zeros, if any. Whenever 
appropriate, use the Rational Zeros Theorem, the Upper and Lower 
Bounds Theorem, Descartes’ Rule of Signs, the Quadratic Formula, 
or other factoring techniques.

81.	 P1x 2  2x4  3x3  4x2  3x  2

82.	 P1x 2  2x4  15x3  31x2  20x  4

83.	 P1x 2  4x4  21x2  5

84.	 P1x 2  6x4  7x3  8x2  5x

85.	 P1x 2  x5  7x4  9x3  23x2  50x  24

86.	 P1x 2  8x5  14x4  22x3  57x2  35x  6
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SECTION 3.4  ■  Real Zeros of Polynomials  285

87–90  ■  Polynomials With No Rational Zeros    Show that the 
polynomial does not have any rational zeros.

	 87.	 P1x 2  x3  x  2

	 88.	 P1x 2  2x4  x3  x  2

	 89.	 P1x 2  3x3  x2  6x  12

	 90.	 P1x 2  x50  5x25  x2  1

91–94  ■  Verifying Zeros Using a Graphing Device    The real 
solutions of the given equation are rational. List all possible ratio-
nal roots using the Rational Zeros Theorem, and then graph the 
polynomial in the given viewing rectangle to determine which 
values are actually solutions. (All solutions can be seen in the 
given viewing rectangle.)

	 91.	 x3 3x2  4x  12  0;    34, 44 by 315, 154
	 92.	 x4  5x2  4  0;    34, 44 by 330, 304
	 93.	 2x4  5x3  14x2  5x  12  0;    32, 54 by 340, 404
	 94.	 3x3  8x2  5x  2  0;    33, 34 by 310, 104

95–98  ■  Finding Zeros Using a Graphing Device    Use a graphing 
device to find all real solutions of the equation, rounded to two 
decimal places.

	 95.	 x4  x  4  0

	 96.	 2x3  8x2  9x  9  0

	 97.	 4.00x4  4.00x3  10.96x2  5.88x  9.09  0

	 98.	 x5  2.00x4  0.96x3  5.00x2  10.00x  4.80  0

applications
	 99.	 Volume of a Silo    A grain silo consists of a cylindrical 

main section and a hemispherical roof. If the total  
volume of the silo (including the part inside the roof  
section) is 15,000 ft3 and the cylindrical part is 30 ft tall, 
what is the radius of the silo, rounded to the nearest tenth 
of a foot?

30 ft

	100.	 Dimensions of a Lot    A rectangular parcel of land has an 
area of 5000 ft2. A diagonal between opposite corners is 
measured to be 10 ft longer than one side of the parcel. 

What are the dimensions of the land, rounded to the nearest 
foot?

x+10

x

	101. � Depth of Snowfall    Snow began falling at noon on Sunday. 
The amount of snow on the ground at a certain location at 
time t was given by the function

 h1 t 2  11.60t  12.41t 
2  6.20t 

3

  1.58t4  0.20t 
5  0.01t 

6

		�  where t is measured in days from the start of the snowfall  
and h1 t 2  is the depth of snow in inches. Draw a graph of  
this function, and use your graph to answer the following  
questions.

(a)	 What happened shortly after noon on Tuesday?

(b)	 Was there ever more than 5 in. of snow on the ground? 
If so, on what day(s)?

(c)	 On what day and at what time (to the nearest hour) did 
the snow disappear completely?

102. � Volume of a Box    An open box with a volume of 1500 cm3  
is to be constructed by taking a piece of cardboard 20 cm by  
40 cm, cutting squares of side length x cm from each corner, 
and folding up the sides. Show that this can be done in two 
different ways, and find the exact dimensions of the box in 
each case.

20 cm

40 cm

x
x

	103. � Volume of a Rocket    A rocket consists of a right circular 
cylinder of height 20 m surmounted by a cone whose height 
and diameter are equal and whose radius is the same as that 
of the cylindrical section. What should this radius be 
(rounded to two decimal places) if the total volume is to be 
500p/3 m3?

20 m
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104. � Volume of a Box    A rectangular box with a volume of  
2 !2 ft3 has a square base as shown below. The diagonal of  
the box (between a pair of opposite corners) is 1 ft longer 
than each side of the base.

(a)	 If the base has sides of length x feet, show that

x6  2x5  x4  8  0

(b)	 �Show that two different boxes satisfy the given condi-
tions. Find the dimensions in each case, rounded to the 
nearest hundredth of a foot.

x
x

105.  �Girth of a Box    A box with a square base has length plus 
girth of 108 in. (Girth is the distance “around” the box.) 
What is the length of the box if its volume is 2200 in3?

b

l
b

DiSCUSS  ■  DISCOVER  ■  PROVE  ■  WRITE
106.	 �DISCUSS  ■  DISCOVER:  How Many Real Zeros Can a Polyno-

mial Have?    Give examples of polynomials that have the 
following properties, or explain why it is impossible to find 
such a polynomial.

(a)	 �A polynomial of degree 3 that has no real zeros

(b)	 �A polynomial of degree 4 that has no real zeros

(c)	 ��A polynomial of degree 3 that has three real zeros, only 
one of which is rational

(d)	 A polynomial of degree 4 that has four real zeros, none 
of which is rational

		  What must be true about the degree of a polynomial with 
integer coefficients if it has no real zeros?

107.	 DISCUSS  ■  PROVE:  The Depressed Cubic    The most gen-
eral cubic (third-degree) equation with rational coefficients 
can be written as

x3  ax2  bx  c  0

(a)	 Prove that if we replace x by X  a /3 and simplify, we 
end up with an equation that doesn’t have an X 2 term, 
that is, an equation of the form

X 3  pX  q  0

	 �This is called a depressed cubic, because we have 
“depressed” the quadratic term.

(b)	 �Use the procedure described in part (a) to depress the 
equation x3  6x2  9x  4  0.

108.	 DISCUSS:  The Cubic Formula    The Quadratic Formula can 
be used to solve any quadratic (or second-degree) equation. 
You might have wondered whether similar formulas exist for 
cubic (third-degree), quartic (fourth-degree), and higher-
degree equations. For the depressed cubic x3  px  q  0, 
Cardano (page 292) found the following formula for one 
solution:

x  É
3 q

2
 Å

q2

4


p3

27
 É

3 q

2
 Å

q2

4


p3

27

		  A formula for quartic equations was discovered by the Ital-
ian mathematician Ferrari in 1540. In 1824 the Norwegian 
mathematician Niels Henrik Abel proved that it is impossi-
ble to write a quintic formula, that is, a formula for fifth-
degree equations. Finally, Galois (page 277) gave a criterion 
for determining which equations can be solved by a formula 
involving radicals.

		      Use the formula given above to find a solution for the fol-
lowing equations. Then solve the equations using the meth-
ods you learned in this section. Which method is easier?

(a)	 x3  3x  2  0

(b)	 x3  27x  54  0

(c)	 x3  3x  4  0

	109.	 PROVE: U pper and Lower Bounds Theorem    Let P1x 2  be a 
polynomial with real coefficients, and let b  0. Use the 
Division Algorithm to write

P1x 2  1x  b 2 # Q1x 2  r

		  Suppose that r  0 and that all the coefficients in Q1x 2  are  
nonnegative. Let z  b.

(a)	 Show that P1z 2  0.

(b)	 �Prove the first part of the Upper and Lower Bounds 
Theorem.

(c)	 �Use the first part of the Upper and Lower Bounds Theo-
rem to prove the second part.    [Hint: Show that if 
P1x 2  satisfies the second part of the theorem, then 
P1x 2  satisfies the first part.]

	110.	 PROVE: N umber of Rational and Irrational Roots    Show 
that the equation

x5  x4  x3  5x2  12x  6  0

		  has exactly one rational root, and then prove that it must 
have either two or four irrational roots.

3.5  Complex Zeros and the Fundamental Theorem of Algebra
■  The Fundamental Theorem of Algebra and Complete Factorization  ■  Zeros and Their 
Multiplicities  ■  Complex Zeros Come in Conjugate Pairs  ■ L inear and Quadratic Factors

We have already seen that an nth-degree polynomial can have at most n real zeros. In the 
complex number system an nth-degree polynomial has exactly n zeros (counting multi-
plicity) and so can be factored into exactly n linear factors. This fact is a consequence of 
the Fundamental Theorem of Algebra, which was proved by the German mathematician 
C. F. Gauss in 1799 (see page 290).

■  The Fundamental Theorem of Algebra  
and Complete Factorization

The following theorem is the basis for much of our work in factoring polynomials and 
solving polynomial equations.

Fundamental Theorem of Algebra

Every polynomial

P1x 2  an  
x n  an1x n1  . . .  a1x  a0  1n  1, an ? 0 2

with complex coefficients has at least one complex zero.

Because any real number is also a complex number, the theorem applies to polyno-
mials with real coefficients as well.

The Fundamental Theorem of Algebra and the Factor Theorem together show that a 
polynomial can be factored completely into linear factors, as we now prove.

Complete Factorization Theorem

If P1x 2  is a polynomial of degree n  1, then there exist complex numbers  
a, c1, c2, . . . , cn (with a ? 0) such that

P1x 2  a1x  c1 2 1x  c2 2  . . . 1x  cn 2

Proof    By the Fundamental Theorem of Algebra, P has at least one zero. Let’s call  
it c1. By the Factor Theorem (see page 272), P1x 2  can be factored as

P1x 2  1x  c1 2Q11x 2
where Q11x 2  is of degree n  1. Applying the Fundamental Theorem to the quotient 
Q11x 2  gives us the factorization

P1x 2  1x  c1 2 1x  c2 2Q21x 2
where Q21x 2  is of degree n  2 and c2 is a zero of Q11x 2 . Continuing this process for 
n steps, we get a final quotient Qn1x 2  of degree 0, a nonzero constant that we will call 
a. This means that P has been factored as

	 P1x 2  a1x  c1 2 1x  c2 2c1x  cn 2 	 ■

To actually find the complex zeros of an nth-degree polynomial, we usually first factor 
as much as possible, then use the Quadratic Formula on parts that we can’t factor further.

Complex numbers are discussed in 
Section 1.6.
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3.5  Complex Zeros and the Fundamental Theorem of Algebra
■  The Fundamental Theorem of Algebra and Complete Factorization  ■  Zeros and Their 
Multiplicities  ■  Complex Zeros Come in Conjugate Pairs  ■ L inear and Quadratic Factors

We have already seen that an nth-degree polynomial can have at most n real zeros. In the 
complex number system an nth-degree polynomial has exactly n zeros (counting multi-
plicity) and so can be factored into exactly n linear factors. This fact is a consequence of 
the Fundamental Theorem of Algebra, which was proved by the German mathematician 
C. F. Gauss in 1799 (see page 290).

■  The Fundamental Theorem of Algebra  
and Complete Factorization

The following theorem is the basis for much of our work in factoring polynomials and 
solving polynomial equations.

Fundamental Theorem of Algebra

Every polynomial

P1x 2  an  
x n  an1x n1  . . .  a1x  a0  1n  1, an ? 0 2

with complex coefficients has at least one complex zero.

Because any real number is also a complex number, the theorem applies to polyno-
mials with real coefficients as well.

The Fundamental Theorem of Algebra and the Factor Theorem together show that a 
polynomial can be factored completely into linear factors, as we now prove.

Complete Factorization Theorem

If P1x 2  is a polynomial of degree n  1, then there exist complex numbers  
a, c1, c2, . . . , cn (with a ? 0) such that

P1x 2  a1x  c1 2 1x  c2 2  . . . 1x  cn 2

Proof    By the Fundamental Theorem of Algebra, P has at least one zero. Let’s call  
it c1. By the Factor Theorem (see page 272), P1x 2  can be factored as

P1x 2  1x  c1 2Q11x 2
where Q11x 2  is of degree n  1. Applying the Fundamental Theorem to the quotient 
Q11x 2  gives us the factorization

P1x 2  1x  c1 2 1x  c2 2Q21x 2
where Q21x 2  is of degree n  2 and c2 is a zero of Q11x 2 . Continuing this process for 
n steps, we get a final quotient Qn1x 2  of degree 0, a nonzero constant that we will call 
a. This means that P has been factored as

	 P1x 2  a1x  c1 2 1x  c2 2c1x  cn 2 	 ■

To actually find the complex zeros of an nth-degree polynomial, we usually first factor 
as much as possible, then use the Quadratic Formula on parts that we can’t factor further.

Complex numbers are discussed in 
Section 1.6.

71759_ch03_245-328.indd   287 9/16/14   5:19 PM

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



288  CHAPTER 3  ■  Polynomial and Rational Functions

Example 1  ■  Factoring a Polynomial Completely
Let P1x 2  x3  3x2  x  3.

(a)	 Find all the zeros of P.

(b)	 Find the complete factorization of P.

Solution

(a)	 We first factor P as follows.

 P1x 2  x3  3x2  x  3         Given

  x21x  3 2  1x  3 2         Group terms

  1x  3 2 1x2  1 2         Factor x  3

	 	 We find the zeros of P by setting each factor equal to 0:

P1x 2  1x  3 2 1x2  1 2

	 	� Setting x  3  0, we see that x  3 is a zero. Setting x2  1  0, we get  
x2  1, so x  i. So the zeros of P are 3, i, and i.

(b)	 �Since the zeros are 3, i, and i, the complete factorization of P is

 P1x 2  1x  3 2 1x  i 2 3x  1i 2 4
  1x  3 2 1x  i 2 1x  i 2

Now Try Exercise 7	 ■

Example 2  ■  Factoring a Polynomial Completely
Let P1x 2  x3  2x  4.

(a)	 Find all the zeros of P.

(b)	 Find the complete factorization of P.

Solution

(a)	 �The possible rational zeros are the factors of 4, which are 1, 2, 4. Using 
synthetic division (see the margin), we find that 2 is a zero, and the polynomial 
factors as

P1x 2  1x  2 2 1x2  2x  2 2

	 	� To find the zeros, we set each factor equal to 0. Of course, x  2  0 means that  
x  2. We use the Quadratic Formula to find when the other factor is 0.

x2  2x  2  0    Set factor equal to 0

 x  
2  !4  8

2
    Quadratic Formula

 x  
2  2i

2
    Take square root

 x  1  i     Simplify

	 	 So the zeros of P are 2, 1  i, and 1  i.

This factor is 0 when x  3 This factor is 0 when x  i or i

	 2    ∣	 1	 0	 2	 4

		  2	 4	 4

	 1	 2	 2	 0

This factor is 0 when x  2 Use the Quadratic Formula to 
find when this factor is 0
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(b)	 �Since the zeros are 2, 1  i, and 1  i, the complete factorization of P is

 P1x 2  3x  12 2 4 3x  11  i 2 4 3x  11  i 2 4
  1x  2 2 1x  1  i 2 1x  1  i 2

Now Try Exercise 9	 ■

■  Zeros and Their Multiplicities
In the Complete Factorization Theorem the numbers c1, c2, . . . , cn are the zeros of P. 
These zeros need not all be different. If the factor x  c appears k times in the complete 
factorization of P1x 2 , then we say that c is a zero of multiplicity k (see page 263). For 
example, the polynomial

P1x 2  1x  1 2 31x  2 2 21x  3 2 5
has the following zeros:

1 1multiplicity 3 2  2 1multiplicity 2 2  3 1multiplicity 5 2
The polynomial P has the same number of zeros as its degree: It has degree 10 and has 
10 zeros, provided that we count multiplicities. This is true for all polynomials, as we 
prove in the following theorem.

Zeros Theorem

Every polynomial of degree n  1 has exactly n zeros, provided that a zero of 
multiplicity k is counted k times.

Proof    Let P be a polynomial of degree n. By the Complete Factorization  
Theorem

P1x 2  a1x  c1 2 1x  c2 2  . . . 1x  cn 2
Now suppose that c is any given zero of P. Then

P1c 2  a1c  c1 2 1c  c2 2  . . . 1c  cn 2  0

Thus by the Zero-Product Property, one of the factors c  ci must be 0, so c  ci  
for some i. It follows that P has exactly the n zeros c1, c2, . . . , cn.	 ■

Example 3  ■  Factoring a Polynomial with Complex Zeros
Find the complete factorization and all five zeros of the polynomial

P1x 2  3x5  24x3  48x

Solution    Since 3x is a common factor, we have

 P1x 2  3x1x4  8x2  16 2
  3x1x2  4 2 2

This factor is 0 when x  0 This factor is 0 when  
x  2i or x  2i
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290  CHAPTER 3  ■  Polynomial and Rational Functions

To factor x2  4, note that 2i and 2i are zeros of this polynomial. Thus 
x2  4  1x  2i 2 1x  2i 2 , so

 P1x 2  3x 3 1x  2i 2 1x  2i 2 4 2
  3x1x  2i 2 21x  2i 2 2

The zeros of P are 0, 2i, and 2i. Since the factors x  2i and x  2i each occur 
twice in the complete factorization of P, the zeros 2i and 2i are of multiplicity 2 (or 
double zeros). Thus we have found all five zeros.

Now Try Exercise 31	 ■

The following table gives further examples of polynomials with their complete fac-
torizations and zeros.

Degree Polynomial Zero(s) Number of zeros

1  P1x 2  x  4 4 1

2  P1x 2  x2  10x  25 5 1multiplicity 22 2
  1x  5 2 1x  5 2

3  P1x 2  x3  x 0, i, i 3
  x1x  i 2 1x  i 2

4  P1x 2  x4  18x2  81 3i 1multiplicity 22, 4
  1x  3i 2 21x  3i 2 2  3i 1multiplicity 22

5  P1x 2  x5  2x4  x3 0 1multiplicity 32, 5
  x31x  1 2 2 1 1multiplicity 22

Example 4  ■  Finding Polynomials with Specified Zeros
(a)	 �Find a polynomial P1x 2  of degree 4, with zeros i, i, 2, and 2, and with 

P13 2  25.

(b)	 �Find a polynomial Q1x 2  of degree 4, with zeros 2 and 0, where 2 is a zero of 
multiplicity 3.

Solution

(a)	 The required polynomial has the form

 P1x 2  a1x  i 2 1x  1i 22 1x  2 2 1x  12 22
  a1x2  1 2 1x2  4 2         Difference of squares

  a1x4  3x2  4 2         Multiply

	 	 We know that P13 2  a134  3 # 32  4 2  50a  25, so a  1
2. Thus

P1x 2  1
2 x4  3

2 x2  2

(b)	 We require

 Q1x 2  a 3x  12 2 4 31x  0 2
  a1x  2 2 3x
  a1x3  6x2  12x  8 2x         Special Product Formula 4 (Section 1.3)

  a1x 4  6x 3  12x2  8x 2

0 is a zero of 
multiplicity 1

2i is a zero of 
multiplicity 2

2i is a zero of 
multiplicity 2
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Carl Friedrich Gauss (1777–1855) 
is considered the greatest mathematician 
of modern times. His contemporaries 
called him the “Prince of Mathematics.” 
He was born into a poor family; his father 
made a living as a mason. As a very small 
child, Gauss found a calculation error in 
his father’s accounts, the first of many 
incidents that gave evidence of his math-
ematical precocity. (See also page 854.) 
At 19, Gauss demonstrated that the regu-
lar 17-sided polygon can be constructed 
with straight-edge and compass alone. 
This was remarkable because, since the 
time of Euclid, it had been thought that 
the only regular polygons constructible 
in this way were the triangle and penta-
gon. Because of this discovery Gauss 
decided to pursue a career in mathemat-
ics instead of languages, his other pas-
sion. In his doctoral dissertation, written 
at the age of 22, Gauss proved the  
Fundamental Theorem of Algebra: A 
polynomial of degree n with complex 
coefficients has n roots. His other accom
plishments range over every branch of 
mathematics, as well as physics and 
astronomy.
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SECTION 3.5  ■  Complex Zeros and the Fundamental Theorem of Algebra  291

	 	 Since we are given no information about Q other than its zeros and their multi-
plicity, we can choose any number for a. If we use a  1, we get

 Q1x 2  x4  6x3  12x2  8x

Now Try Exercise 37	 ■

Example 5  ■  Finding All the Zeros of a Polynomial
Find all four zeros of P1x 2  3x4  2x3  x2  12x  4.

Solution    Using the Rational Zeros Theorem from Section 3.4, we obtain the follow-
ing list of possible rational zeros: 1, 2, 4, 1

3, 2
3, 4

3. Checking these using syn-
thetic division, we find that 2 and  

1
3 are zeros, and we get the following factorization.

 P1x 2  3x4  2x3  x2  12x  4

  1x  2 2 13x3  4x2  7x  2 2         Factor x  2

  1x  2 2 Ax  1
3B 13x2  3x  6 2         Factor x  1

3

  31x  2 2 Ax  1
3B 1x2  x  2 2         Factor 3

The zeros of the quadratic factor are

x 
1  !1  8

2
  

1

2
 i 

!7

2
        Quadratic Formula

so the zeros of P1x 2  are

2,  

1

3
,  

1

2
 i 

!7

2
, and  

1

2
 i 

!7

2

Now Try Exercise 47	 ■

■  Complex Zeros Come in Conjugate Pairs
As you might have noticed from the examples so far, the complex zeros of polynomials 
with real coefficients come in pairs. Whenever a  bi is a zero, its complex conjugate  
a  bi is also a zero.

Conjugate Zeros Theorem

If the polynomial P has real coefficients and if the complex number z is a zero 
of P, then its complex conjugate z is also a zero of P.

Proof    Let

P1x 2  an  
x n  an1x

n1  . . .  a1x  a0

where each coefficient is real. Suppose that P1z 2  0. We must prove that P1z 2  0. We 
use the facts that the complex conjugate of a sum of two complex numbers is the sum of 
the conjugates and that the conjugate of a product is the product of the conjugates.

 P1z 2  an1z 2 n  an11z 2 n1  . . .  a1z  a0

  an zn  an1 zn1  . . .  a1 z  a0         Because the coefficients are real

  an  
zn  an1 zn1  . . .  a1z  a0

  anzn  an1zn1  . . .  a1z  a0

  P1z 2  0  0

This shows that z is also a zero of P(x), which proves the theorem.	 ■

Figure 1 shows the graph of the polyno-
mial P in Example 5. The x-intercepts 
correspond to the real zeros of P. The 
imaginary zeros cannot be determined 
from the graph.

40

_20

_2 4

Figure 1 
P1x 2  3x4  2x3  x2  12x  4
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292  CHAPTER 3  ■  Polynomial and Rational Functions

Example 6  ■  A Polynomial with a Specified Complex Zero
Find a polynomial P1x 2  of degree 3 that has integer coefficients and zeros 1

2 and 
3  i.

Solution    Since 3  i is a zero, then so is 3  i by the Conjugate Zeros Theorem. 
This means that P1x 2  must have the following form.

	  P1x 2  aAx  1
2B 3x  13  i 2 4 3x  13  i 2 4

	   aAx  1
2B 3 1x  3 2  i 4 3 1x  3 2  i 4 	 Regroup

	   aAx  1
2B 3 1x  3 2 2  i 2 4 	 Difference of Squares Formula

	   aAx  1
2B 1x2  6x  10 2 	 Expand

	   aAx3   13 

2  
x2  13x  5B 	 Expand

To make all coefficients integers, we set a  2 and get

P1x 2  2x3  13x2  26x  10

Any other polynomial that satisfies the given requirements must be an integer multi-
ple of this one.

Now Try Exercise 41	 ■

■ L inear and Quadratic Factors
We have seen that a polynomial factors completely into linear factors if we use complex 
numbers. If we don’t use complex numbers, then a polynomial with real coefficients can 
always be factored into linear and quadratic factors. We use this property in Section 10.7 
when we study partial fractions. A quadratic polynomial with no real zeros is called  
irreducible over the real numbers. Such a polynomial cannot be factored without using 
complex numbers.

Linear and quadratic factors theorem

Every polynomial with real coefficients can be factored into a product of linear 
and irreducible quadratic factors with real coefficients.

Proof    We first observe that if c  a  bi is a complex number, then

 1x  c 2 1x  c 2  3x  1a  bi 2 4 3x  1a  bi 2 4
  3 1x  a 2  bi 4 3 1x  a 2  bi 4
  1x  a 2 2  1bi 2 2
  x2  2ax  1a2  b2 2

The last expression is a quadratic with real coefficients.
Now, if P is a polynomial with real coefficients, then by the Complete Factoriza-

tion Theorem

P1x 2  a1x  c1 2 1x  c2 2  . . . 1x  cn 2
Since the complex roots occur in conjugate pairs, we can multiply the factors 
corresponding to each such pair to get a quadratic factor with real coefficients. This  
results in P being factored into linear and irreducible quadratic factors.	 ■
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Gerolamo Cardano (1501–1576) is 
certainly one of the most colorful figures 
in the history of mathematics. He was the 
best-known physician in Europe in his 
day, yet throughout his life he was 
plagued by numerous maladies, includ-
ing ruptures, hemorrhoids, and an irratio-
nal fear of encountering rabid dogs. He 
was a doting father, but his beloved sons 
broke his heart—his favorite was eventu-
ally beheaded for murdering his own 
wife. Cardano was also a compulsive 
gambler; indeed, this vice might have 
driven him to write the Book on Games of 
Chance, the first study of probability 
from a mathematical point of view.

In Cardano’s major mathematical 
work, the Ars Magna, he detailed the 
solution of the general third- and fourth-
degree polynomial equations. At the time 
of its publication, mathematicians were 
uncomfortable even with negative num-
bers, but Cardano’s formulas paved the 
way for the acceptance not just of nega-
tive numbers, but also of imaginary num-
bers, because they occurred naturally in 
solving polynomial equations. For exam-
ple, for the cubic equation

x 3  15x  4  0

one of his formulas gives the solution

x  "3 2  !121  "3 2  !121

(See page 286, Exercise 108.) This value 
for x actually turns out to be the integer 
4, yet to find it, Cardano had to use the 
imaginary number !121  11i .
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SECTION 3.5  ■  Complex Zeros and the Fundamental Theorem of Algebra  293

Example 7  ■  Factoring a Polynomial into Linear and Quadratic Factors
Let P1x 2  x4  2x2  8.

(a)	 Factor P into linear and irreducible quadratic factors with real coefficients.

(b)	 Factor P completely into linear factors with complex coefficients.

Solution

(a)	 	  P1x 2  x4  2x2  8

	 		    1x2  2 2 1x2  4 2
	 		    1x  !2 2 1x  !2 2 1x2  4 2
	 	 The factor x2  4 is irreducible, since it has no real zeros.

(b)	 To get the complete factorization, we factor the remaining quadratic factor:

 P1x 2  1x  !2 2 1x  !2 2 1x2  4 2
   1x  !2 2 1x  !2 2 1x  2i 2 1x  2i 2

Now Try Exercise 67	 ■

concepts
	 1.	� The polynomial P1x 2  5x21x  4 2 31x  7 2  has degree 

		     . It has zeros 0, 4, and    . The zero 0 has 

		  multiplicity    , and the zero 4 has multiplicity 

		     .

	 2.	 (a) � If a is a zero of the polynomial P, then   must 
be a factor of P(x).

		  (b) � If a is a zero of multiplicity m of the polynomial P, then 

			�     must be a factor of P(x) when we factor P 
completely.

	 3.	 A polynomial of degree n  1 has exactly   zeros if 
a zero of multiplicity m is counted m times.

	 4.	 If the polynomial function P has real coefficients and if a  bi 

		  is a zero of P, then   is also a zero of P. So if 3  i 

		  is a zero of P, then   is also a zero of P.

5–6  ■  True or False? If False, give a reason. 

	 5.	 Let P1x 2  x4  1.

(a)	 The polynomial P has four complex zeros.

(b)	 The polynomial P can be factored into linear factors with 
complex coefficients.

(c)	 Some of the zeros of P are real.

	 6.	 Let P1x 2  x3  x.

(a)	 The polynomial P has three real zeros.

(b)	 The polynomial P has at least one real zero.

(c)	 The polynomial P can be factored into linear factors with 
real coefficients.

skills
7–18  ■  Complete Factorization    A polynomial P is given.  
(a) Find all zeros of P, real and complex. (b) Factor P 
completely.

	 7.	 P1x 2  x4  4x2	   8.	 P1x 2  x5  9x3

	 9.	 P1x 2  x3  2x2  2x	 10.	 P1x 2  x3  x2  x

	11.	 P1x 2  x4  2x2  1	 12.	 P1x 2  x4  x2  2

	13.	 P1x 2  x4  16	 14.	 P1x 2  x4  6x2  9

	15.	 P1x 2  x3  8	 16.	 P1x 2  x3  8

17.	 P1x 2  x6  1	 18.	 P1x 2  x6  7x3  8

19–36  ■  Complete Factorization    Factor the polynomial  
completely, and find all its zeros. State the multiplicity of  
each zero.

19.	 P1x 2  x2  25	 20.	 P1x 2  4x2  9

21.	 Q1x 2  x2  2x  2	 22.	 Q1x 2  x2  8x  17

23.	 P1x 2  x3  4x	 24.	 P1x 2  x3  x2  x

25.	 Q1x 2  x4  1	 26.	 Q1x 2  x4  625

27.	 P1x 2  16x4  81	 28.	 P1x 2  x3  64

29.	 P1x 2  x3  x2  9x  9	 30.	 P1x 2  x6  729

31.	 Q1x 2  x4  2x2  1	 32.	 Q1x 2  x4  10x2  25

33.	 P1x 2  x4  3x2  4	 34.	 P1x 2  x5  7x3

35.	 P1x 2  x5  6x3  9x	 36.	 P1x 2  x6  16x3  64

3.5 E xercises
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294  CHAPTER 3  ■  Polynomial and Rational Functions

37–46  ■  Finding a Polynomial with Specified Zeros    Find a 
polynomial with integer coefficients that satisfies the given 
conditions.

	37.	 P has degree 2 and zeros 1  i and 1  i.

	38.	 P has degree 2 and zeros 1  i!2 and 1  i!2.

	39.	 Q has degree 3 and zeros 3, 2i, and 2i.

	40.	 Q has degree 3 and zeros 0 and i.

	41.	 P has degree 3 and zeros 2 and i.

	42.	 Q has degree 3 and zeros 3 and 1  i.

	43.	 R has degree 4 and zeros 1  2i and 1, with 1 a zero of  
multiplicity 2.

	44.	 S has degree 4 and zeros 2i and 3i.

	45.	 T has degree 4, zeros i and 1  i, and constant term 12.

	46.	 U has degree 5, zeros 1
2, 1, and i, and leading coefficient 

4; the zero 1 has multiplicity 2.

47–64  ■  Finding Complex Zeros    Find all zeros of the 
polynomial.

47.	 P1x 2  x 3  2x2  4x  8

48.	 P1x 2  x3  7x2  17x  15

49.	 P1x 2  x3  2x2  2x  1

50.	 P1x 2  x3  7x2  18x  18

51.	 P1x 2  x3  3x2  3x  2

52.	 P1x 2  x3  x  6

53.	 P1x 2  2x 3  7x2  12x  9

54.	 P1x 2  2x 3  8x2  9x  9

55.	 P1x 2  x4  x3  7x2  9x  18

56.	 P1x 2  x4  2x3  2x2  2x  3

57.	 P1x 2  x5  x4  7x3  7x2  12x  12

	58.	 P1x 2  x5  x3  8x2  8    [Hint: Factor by grouping.]

59.	 P1x 2  x4  6x3  13x2  24x  36

60.	 P1x 2  x4  x2  2x  2

61.	 P1x 2  4x4  4x3  5x2  4x  1

62.	 P1x 2  4x4  2x3  2x2  3x  1

63.	 P1x 2  x5  3x4  12x3  28x2  27x  9

64.	 P1x 2  x5  2x4  2x3  4x2  x  2

65–70  ■  Linear and Quadratic Factors    A polynomial P is given. 
(a) Factor P into linear and irreducible quadratic factors with real 
coefficients. (b) Factor P completely into linear factors with com-
plex coefficients.

65.	 P1x 2  x3  5x2  4x  20

66.	 P1x 2  x3  2x  4	

67.	 P1x 2  x4  8x2  9	 68.	 P1x 2  x4  8x2  16

69.	 P1x 2  x6  64	 70.	 P1x 2  x5  16x

skills Plus
	71.	 Number of Real and Non-Real Solutions    By the Zeros Theo-

rem, every nth-degree polynomial equation has exactly n 
solutions (including possibly some that are repeated). Some 
of these may be real, and some may be non-real. Use a 
graphing device to determine how many real and non-real 
solutions each equation has.

(a)	 x4  2x3  11x2  12x  0

(b)	 x4  2x3  11x2  12x  5  0

(c)	 x4  2x3  11x2  12x  40  0

72–74  ■  Real and Non-Real Coefficients    So far, we have 
worked only with polynomials that have real coefficients. These 
exercises involve polynomials with real and imaginary 
coefficients.

	72.	 Find all solutions of the equation.

(a)	 2x  4i  1	 (b)  x2  ix  0

(c)	 x2  2ix  1  0	 (d)  ix2  2x  i  0

	73.	 (a) � Show that 2i and 1  i are both solutions of the equation

x2  11  i 2x  12  2i 2  0

	 but that their complex conjugates 2i and 1  i are not.

(b)	� Explain why the result of part (a) does not violate the 
Conjugate Zeros Theorem.

	74.	 (a) � Find the polynomial with real coefficients of the smallest 
possible degree for which i and 1  i are zeros and in 
which the coefficient of the highest power is 1.

(b)	� Find the polynomial with complex coefficients of the 
smallest possible degree for which i and 1  i are zeros 
and in which the coefficient of the highest power is 1.

DiSCUSS  ■  DISCOVER  ■  PROVE  ■  WRITE
	75.	 DISCUSS:  Polynomials of Odd Degree    The Conjugate Zeros 

Theorem says that the complex zeros of a polynomial with 
real coefficients occur in complex conjugate pairs. Explain 
how this fact proves that a polynomial with real coefficients 
and odd degree has at least one real zero.

	76.	 DISCUSS  ■  DISCOVER:  Roots of Unity    There are two 
square roots of 1, namely, 1 and 1. These are the solutions 
of x2  1. The fourth roots of 1 are the solutions of the equa-
tion x4  1 or x4  1  0. How many fourth roots of 1 are 
there? Find them. The cube roots of 1 are the solutions of the 
equation x3  1 or x3  1  0. How many cube roots of 1 
are there? Find them. How would you find the sixth roots of 
1? How many are there? Make a conjecture about the number 
of nth roots of 1.

3.6  Rational Functions
■  Rational Functions and Asymptotes  ■  Transformations of y  1/x   ■  Asymptotes  
of Rational Functions  ■  Graphing Rational Functions  ■  Common Factors in Numerator  
and Denominator  ■ S lant Asymptotes and End Behavior  ■  Applications

A rational function is a function of the form

r 1x 2 
P1x 2
Q1x 2

where P and Q are polynomials. We assume that P1x 2  and Q1x 2  have no factor in com-
mon. Even though rational functions are constructed from polynomials, their graphs 
look quite different from the graphs of polynomial functions.

■  Rational Functions and Asymptotes
The domain of a rational function consists of all real numbers x except those for which 
the denominator is zero. When graphing a rational function, we must pay special atten-
tion to the behavior of the graph near those x-values. We begin by graphing a very 
simple rational function.

Example 1  ■  A Simple Rational Function
Graph the rational function f 1x 2  1/x, and state the domain and range.

Solution    The function f is not defined for x  0. The following tables show that 
when x is close to zero, the value of 0 f 1x 2 0  is large, and the closer x gets to zero, the 
larger 0 f 1x 2 0  gets.

Approaching 0 Approaching  Approaching 0 Approaching 

x fxxc

0.1 10
0.01 100
0.00001 100,000

x fxxc

0.1 10
0.01 100
0.00001 100,000

We describe this behavior in words and in symbols as follows. The first table shows 
that as x approaches 0 from the left, the values of y  f 1x 2  decrease without bound. 
In symbols,

f 1x 2 S as xS 0  
“y approaches negative infinity 
as x approaches 0 from the left”

Domains of rational expressions are 
discussed in Section 1.4.

For positive real numbers,

 
1

BIG NUMBER
 small number

 
1

small number
 BIG NUMBER
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3.6  Rational Functions
■  Rational Functions and Asymptotes  ■  Transformations of y  1/x   ■  Asymptotes  
of Rational Functions  ■  Graphing Rational Functions  ■  Common Factors in Numerator  
and Denominator  ■ S lant Asymptotes and End Behavior  ■  Applications

A rational function is a function of the form

r 1x 2 
P1x 2
Q1x 2

where P and Q are polynomials. We assume that P1x 2  and Q1x 2  have no factor in com-
mon. Even though rational functions are constructed from polynomials, their graphs 
look quite different from the graphs of polynomial functions.

■  Rational Functions and Asymptotes
The domain of a rational function consists of all real numbers x except those for which 
the denominator is zero. When graphing a rational function, we must pay special atten-
tion to the behavior of the graph near those x-values. We begin by graphing a very 
simple rational function.

Example 1  ■  A Simple Rational Function
Graph the rational function f 1x 2  1/x, and state the domain and range.

Solution    The function f is not defined for x  0. The following tables show that 
when x is close to zero, the value of 0 f 1x 2 0  is large, and the closer x gets to zero, the 
larger 0 f 1x 2 0  gets.

Approaching 0 Approaching  Approaching 0 Approaching 

x fxxc

0.1 10
0.01 100
0.00001 100,000

x fxxc

0.1 10
0.01 100
0.00001 100,000

We describe this behavior in words and in symbols as follows. The first table shows 
that as x approaches 0 from the left, the values of y  f 1x 2  decrease without bound. 
In symbols,

f 1x 2 S as xS 0  
“y approaches negative infinity 
as x approaches 0 from the left”

Domains of rational expressions are 
discussed in Section 1.4.

For positive real numbers,

 
1

BIG NUMBER
 small number

 
1

small number
 BIG NUMBER

Discovery Project

Managing Traffic

A highway engineer wants to determine the optimal safe driving speed for a road. 
The higher the speed limit, the more cars the road can accommodate, but safety 
requires a greater following distance at higher speeds. In this project we find a 
rational function that models the carrying capacity of a road at a given traffic 
speed.The model can be used to determine the speed limit at which the road has its 
maximum carrying capacity. You can find the project at www.stewartmath.com.©
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296  CHAPTER 3  ■  Polynomial and Rational Functions

The second table shows that as x approaches 0 from the right, the values of f 1x 2  
increase without bound. In symbols,

f 1x 2 S  as xS 0  
“y approaches infinity as x  
approaches 0 from the right”

The next two tables show how f 1x 2  changes as 0  x 0  becomes large.

x fxxc

10 0.1
100 0.01

100,000 0.00001

x fxxc

10 0.1
100 0.01

100,000 0.00001

Approaching  Approaching 0 Approaching  Approaching 0

These tables show that as 0  x 0  becomes large, the value of f 1x 2  gets closer and closer 
to zero. We describe this situation in symbols by writing

	 f 1x 2 S 0 as xS  and  f 1x 2 S 0 as xS 

Using the information in these tables and plotting a few additional points, we obtain 
the graph shown in Figure 1.

x

2

2

y

0

f(x)      `
as x      0+

as x      0_

f(x)      0 as
x      `

f(x)      0 as
x      _`

f(x)      _`Figure 1 
f 1x 2  1/x

x fxxc  1/x

2 1
2

1 1
 

1
2 2
1
2 2
1 1
2 1

2

The function f is defined for all values of x other than 0, so the domain is 5x 0  x ? 06 . 
From the graph we see that the range is 5y 0  y ? 06 .

Now Try Exercise 9	 ■

In Example 1 we used the following arrow notation.

Symbol Meaning

x → a x approaches a from the left
x → a x approaches a from the right
x →  x goes to negative infinity; that is, x decreases without bound
x →  x goes to infinity; that is, x increases without bound

The line x  0 is called a vertical asymptote of the graph in Figure 1, and the line  
y  0 is a horizontal asymptote. Informally speaking, an asymptote of a function is  
a line to which the graph of the function gets closer and closer as one travels along 
that line.

Obtaining the domain and range of a 
function from its graph is explained in 
Section 2.3, page 171.
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SECTION 3.6  ■  Rational Functions  297

Definition of Vertical and Horizontal Asymptotes

1.	� The line x  a is a vertical asymptote of the function y  f 1x 2  if y approaches ` as x approaches a from the right  
or left.

y      ` as x      a±

xa

y

y      ` as x      a–

xa

y

y      _` as x      a±

xa

y

y      _` as x      a–

xa

y

2.	 The line y  b is a horizontal asymptote of the function y  f 1x 2  if y approaches b as x approaches `.

y      b as x      `

x
b

y

y      b as x      _`

x
b

y

A rational function has vertical asymptotes where the function is undefined, that is, 
where the denominator is zero.

■  Transformations of y  1/x
A rational function of the form

r 1x 2 
ax  b

cx  d

can be graphed by shifting, stretching, and/or reflecting the graph of f 1x 2  1/x shown 
in Figure 1, using the transformations studied in Section 2.6. (Such functions are called 
linear fractional transformations.)

Example 2  ■  Using Transformations to Graph Rational Functions
Graph each rational function, and state the domain and range.

(a)	 r 1x 2 
2

x  3
                (b)  s1x 2 

3x  5

x  2

Solution

(a)	 Let f 1x 2  1/x. Then we can express r in terms of f as follows:

 r 1x 2 
2

x  3

  2 a 1

x  3
b         Factor 2

  21f 1x  3 22         Since f 1x 2  1/x

	 	� From this form we see that the graph of r is obtained from the graph of f by shifting 
3 units to the right and stretching vertically by a factor of 2. Thus r has vertical asymp-
tote x  3 and horizontal asymptote y  0. The graph of r is shown in Figure 2.

Recall that for a rational function 
R1x 2  P1x 2 /Q1x 2 , we assume that 
P1x 2  and Q1x 2  have no factor in  
common.

Horizontal
asymptote
y = 0

Vertical
asymptote
x = 3

2
x-3r(x)=

x

1

3

y

0

Figure 2
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298  CHAPTER 3  ■  Polynomial and Rational Functions

		�  The function r is defined for all x other than 3, so the domain is 5x 0  x ? 36 . From 
the graph we see that the range is 5y 0  y ? 06 .

(b)	 �Using long division (see the margin), we get s1x 2  3 
1

x  2
. Thus we can 

express s in terms of f as follows.

 s1x 2  3 
1

x  2

   

1

x  2
 3         Rearrange terms

  f 1x  2 2  3        Since f 1x 2  1/x

	 	� From this form we see that the graph of s is obtained from the graph of f by 
shifting 2 units to the left, reflecting in the x-axis, and shifting upward 3 units. 
Thus s has vertical asymptote x  2 and horizontal asymptote y  3. The graph 
of s is shown in Figure 3.

Figure 3

x

3

y

0_2

3x+5
x+2s(x)=

Vertical asymptote
x = _2

Horizontal asymptote
y = 3

		�    The function s is defined for all x other than 2, so the domain is 5x 0  x ? 26. 
From the graph we see that the range is 5y 0  y ? 36.

Now Try Exercises 15 and 17	 ■

■  Asymptotes of Rational Functions
The methods of Example 2 work only for simple rational functions. To graph more 
complicated ones, we need to take a closer look at the behavior of a rational function 
near its vertical and horizontal asymptotes.

Example 3  ■  Asymptotes of a Rational Function

Graph r 1x 2 
2x2  4x  5

x2  2x  1
, and state the domain and range.

Solution

Vertical asymptote.    We first factor the denominator

r 1x 2 
2x2  4x  5

1x  1 2 2
The line x  1 is a vertical asymptote because the denominator of r is zero when 
x  1.

3

x  2q3x  5

3x  6

1
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SECTION 3.6  ■  Rational Functions  299

To see what the graph of r looks like near the vertical asymptote, we make tables 
of values for x-values to the left and to the right of 1. From the tables shown below 
we see that

yS  as xS 1  and  yS  as xS 1

	 xS 1	 xS 1

Approaching 1– Approaching  Approaching 1+ Approaching 

x y

0 5
0.5 14
0.9 302
0.99 30,002

x y

2 5
1.5 14
1.1 302
1.01 30,002

Thus near the vertical asymptote x  1, the graph of r has the shape shown in  
Figure 4.

Horizontal asymptote.    The horizontal asymptote is the value that y approaches as  
xS . To help us find this value, we divide both numerator and denominator by 
x2, the highest power of x that appears in the expression:

y 
2x2  4x  5

x2  2x  1
#

1

x2

1

x2



2 
4
x


5

x2

1 
2
x


1

x2

The fractional expressions 
4
x

, 
5

x2
, 

2
x

, and 
1

x2
 all approach 0 as xS  (see Exer- 

cise 90, Section 1.1, page 12). So as xS , we have

y 

2 
4
x


5

x2

1 
2
x


1

x2

  h   
2  0  0

1  0  0
 2

Thus the horizontal asymptote is the line y  2.
Since the graph must approach the horizontal asymptote, we can complete it as in 

Figure 5.

Domain and range.    The function r is defined for all values of x other than 1, so the 
domain is 5x 0  x ? 16 . From the graph we see that the range is 5y 0  y  26 .

Now Try Exercise 45	 ■

From Example 3 we see that the horizontal asymptote is determined by the leading 
coefficients of the numerator and denominator, since after dividing through by x2 (the 
highest power of x), all other terms approach zero. In general, if r 1x 2  P1x 2 /Q1x 2  and 

These terms approach 0

These terms approach 0

y      ` as
x      1–

y      ` as
x      1±

x

1

5

_1 1 2

y

0

Figure 4

x

1

5

−1 1 2

y

0

y      2 as
x      _`

y      2 as
x      `

Figure 5 

r 1x 2 
2x2  4x  5

x2  2x  1
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300  CHAPTER 3  ■  Polynomial and Rational Functions

the degrees of P and Q are the same (both n, say), then dividing both numerator and 
denominator by xn shows that the horizontal asymptote is

y 
leading coefficient of P

leading coefficient of Q

The following box summarizes the procedure for finding asymptotes.

finding Asymptotes of Rational Functions

Let r be the rational function

r 1x 2 
an  

x n  an1x
n1  . . .  a1x  a0

bm  
x m  bm1x

m1  . . .  b1x  b0

1. � The vertical asymptotes of r are the lines x  a, where a is a zero of the 
denominator.

2.  (a)	 If n  m, then r has horizontal asymptote y  0.

	 (b)	 If n  m, then r has horizontal asymptote y 
an

bm

.

	 (c)	 If n  m, then r has no horizontal asymptote.

Example 4  ■  Asymptotes of a Rational Function

Find the vertical and horizontal asymptotes of r 1x 2 
3x2  2x  1

2x2  3x  2
.

Solution

Vertical asymptotes.    We first factor

r 1x 2 
3x2  2x  1

12x  1 2 1x  2 2

The vertical asymptotes are the lines x  1
2 and x  2.

Horizontal asymptote.    The degrees of the numerator and denominator are the same,  
and

leading coefficient of numerator

leading coefficient of denominator


3

2

Thus the horizontal asymptote is the line y  3
2.

To confirm our results, we graph r using a graphing calculator (see Figure 6).

Figure 6 

r 1x 2 
3x2  2x  1

2x2  3x  2
 

Graph is drawn using dot mode to 
avoid extraneous lines.

10

_10

_6 3

Now Try Exercises 33 and 35	 ■

Recall that for a rational function 
R1x 2  P1x 2 /Q1x 2  we assume that 
P1x 2  and Q1x 2  have no factor in  
common. (See page 295.)

This factor is 0 
when x  1

2

This factor is 0 
when x  2
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SECTION 3.6  ■  Rational Functions  301

■  Graphing Rational Functions
We have seen that asymptotes are important when graphing rational functions. In gen-
eral, we use the following guidelines to graph rational functions.

Sketching Graphs of Rational Functions

1.	 Factor.    Factor the numerator and denominator.

2.	 Intercepts.    Find the x-intercepts by determining the zeros of the numerator 
and the y-intercept from the value of the function at x  0.

3.	 Vertical Asymptotes.    Find the vertical asymptotes by determining the zeros 
of the denominator, and then see whether yS   or yS  on each side 
of each vertical asymptote by using test values.

4.	 Horizontal Asymptote.    Find the horizontal asymptote (if any), using the  
procedure described in the box on page 300.

5.	 Sketch the Graph.    Graph the information provided by the first four steps. 
Then plot as many additional points as needed to fill in the rest of the graph 
of the function.

A fraction is 0 only if its numerator  
is 0.

Example 5  ■  Graphing a Rational Function

Graph r 1x 2 
2x2  7x  4

x2  x  2
, and state the domain and range.

Solution    We factor the numerator and denominator, find the intercepts and asymp-
totes, and sketch the graph.

Factor.    y 
12x  1 2 1x  4 2
1x  1 2 1x  2 2

x-Intercepts.    The x-intercepts are the zeros of the numerator, x  1
2 and x  4.

y-Intercept.    To find the y-intercept, we substitute x  0 into the original form of the 
function.

r 10 2 
210 2 2  710 2  4

10 22  10 2  2


4

2
 2

The y-intercept is 2.

Vertical asymptotes.    The vertical asymptotes occur where the denominator is 0, 
that is, where the function is undefined. From the factored form we see that the verti-
cal asymptotes are the lines x  1 and x  2.

Behavior near vertical asymptotes.    We need to know whether yS   or yS  on 
each side of each vertical asymptote. To determine the sign of y for x-values near the verti-
cal asymptotes, we use test values. For instance, as xS 1, we use a test value close to 
and to the left of 1 1x  0.9, say 2  to check whether y is positive or negative to the left of  
x  1.

y 
1210.9 2  1 2 110.9 2  4 2
110.9 2  1 2 110.9 2  2 2   whose sign is  

1 2 1 2
1 2 1 2 1negative 2

So yS  as xS 1. On the other hand, as xS 1, we use a test value close to 
and to the right of 1 1x  1.1, say 2 , to get

y 
1211.1 2  1 2 111.1 2  4 2
111.1 2  1 2 111.1 2  2 2   whose sign is  

1 2 1 2
1 2 1 2 1positive 2

When choosing test values, we must 
make sure that there is no x-intercept 
between the test point and the vertical 
asymptote.
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302  CHAPTER 3  ■  Polynomial and Rational Functions

So yS   as xS 1. The other entries in the following table are calculated  
similarly.

As xS 2 2 1 1

the sign of y 
x2x  1c xx 1 4c

xx  1c xx 1 2c
 is

1 2 1 2
1 2 1 2

1 2 1 2
1 2 1 2

1 2 1 2
1 2 1 2

1 2 1 2
1 2 1 2

so yS ` ` ` `

Horizontal asymptote.    The degrees of the numerator and denominator are the  
same, and

leading coefficient of numerator

leading coefficient of denominator


2

1
 2

Thus the horizontal asymptote is the line y  2.

Graph.    We use the information we have found, together with some additional val-
ues, to sketch the graph in Figure 7.

x y

6 0.93
3 1.75
1 4.50

1.5 6.29
2 4.50
3 3.50

x

5

3

y

0

Figure 7 

r 1x 2 
2x2  7x  4

x2  x  2

Domain and range.    The domain is 5x 0  x ? 1, x ? 26 . From the graph we see that 
the range is all real numbers.

Now Try Exercise 53	 ■

Example 6  ■  Graphing a Rational Function

Graph the rational function r 1x 2 
x2  4

2x2  2x
, and state the domain and range.

Solution  

Factor.    y 
1x  2 2 1x  2 2

2x1x  1 2
x-intercepts.    2 and 2, from x  2  0 and x  2  0

y-intercept.    None, because r10 2  is undefined

Vertical asymptotes.    x  0 and x  1, from the zeros of the denominator

Unbreakable Codes 
If you read spy novels, you know about 
secret codes and how the hero “breaks” 
the code. Today secret codes have a 
much more common use. Most of the 
information that is stored on computers 
is coded to prevent unauthorized use. For 
example, your banking records, medical 
records, and school records are coded. 
Many cellular and cordless phones code 
the signal carrying your voice so that no 
one can listen in. Fortunately, because of 
recent advances in mathematics, today’s 
codes are “unbreakable.”

Modern codes are based on a simple 
principle: Factoring is much harder than 
multiplying. For example, try multiplying  
78 and 93; now try factoring 9991. It 
takes a long time to factor 9991 because 
it is a product of two primes 97  103, so 
to factor it, we have to find one of these 
primes. Now imagine trying to factor a 
number N that is the product of two 
primes p and q, each about 200 digits 
long. Even the fastest computers would 
take many millions of years to factor such 
a number! But the same computer would 
take less than a second to multiply two 
such numbers. This fact was used by Ron 
Rivest, Adi Shamir, and Leonard Adleman 
in the 1970s to devise the RSA code. Their 
code uses an extremely large number to 
encode a message but requires us to 
know its factors to decode it. As you can 
see, such a code is practically 
unbreakable.

The RSA code is an example of a 
“public key encryption” code. In such 
codes, anyone can code a message using 
a publicly known procedure based on N, 
but to decode the message, they must 
know p and q, the factors of N. When the 
RSA code was developed, it was thought 
that a carefully selected 80-digit number 
would provide an unbreakable code. But 
interestingly, recent advances in the 
study of factoring have made much 
larger numbers necessary.

Mathematics in the Modern World
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Behavior near vertical asymptote. 

As xS 1 1 0 0

the sign of y 
xx 1 2c xx  2c

2xxx 1 1c
 is

1 2 1 2
1 2 1 2

1 2 1 2
1 2 1 2

1 2 1 2
1 2 1 2

1 2 1 2
1 2 1 2

so yS ` ` ` `

Horizontal asymptote.    y  1
2, because the degree of the numerator and the degree 

of the denominator are the same and

leading coefficient of numerator

leading coefficient of denominator


1

2

Graph.    We use the information we have found, together with some additional val-
ues, to sketch the graph in Figure 8.

x y

0.9 17.72
0.5 7.50
0.45 7.67
0.4 8.00
0.3 9.31
0.1 22.17

x

10

1

y

0

Figure 8 

r 1x 2 
x2  4

2x2  2x

Domain and range.    The domain is 5x 0 x ? 0, x ? 16 . From the graph we see that 
the range is 5x 0 x  1

2 or x  7.56 .
Now Try Exercise 55	 ■

Example 7  ■  Graphing a Rational Function

Graph r 1x 2 
5x  21

x2  10x  25
, and state the domain and range.

Solution

Factor.    y 
5x  21

1x  5 2 2

x-Intercept.     

21

5
, from 5x  21  0

y-Intercept.  
21

25
, because  r 10 2 

5 # 0  21

02  10 # 0  25

	
 

21

25

Vertical asymptote.    x  5, from the zeros of the denominator
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304  CHAPTER 3  ■  Polynomial and Rational Functions

Behavior near vertical asymptote.

As xS 5 5

the sign of y 
5x 1 21

xx 1 5c 2  is
1 2
1 2 1 2

1 2
1 2 1 2

so yS ` `

Horizontal asymptote.    y  0, because the degree of the numerator is less than the 
degree of the denominator

Graph.    We use the information we have found, together with some additional val-
ues, to sketch the graph in Figure 9.

x y

15 0.5
10 1.2
3 1.5
1 1.0

3 0.6
5 0.5

10 0.3

x

1

5

y

0

Figure 9 

r 1x 2 
5x  21

x2  10x  25

Domain and range.    The domain is 5x 0  x ? 56 . From the graph we see that the 
range is approximately the interval 1, 1.6 4 .

Now Try Exercise 59	 ■

From the graph in Figure 9 we see that,  contrary to common misconception, a graph 
may cross a horizontal asymptote. The graph in Figure 9 crosses the x-axis (the hori-
zontal asymptote) from below, reaches a maximum value near x  3, and then ap-
proaches the x-axis from above as xS  .

■  Common Factors in Numerator and Denominator
We have adopted the convention that the numerator and denominator of a rational func-
tion have no factor in common. If s1x 2  p1x 2 /q1x 2  and if p and q do have a factor in 
common, then we may cancel that factor, but only for those values of x for which that 
factor is not zero (because division by zero is not defined). Since s is not defined at those 
values of x, its graph has a “hole” at those points, as the following example illustrates. 

Example 8  ■  Common Factor in Numerator and Denominator
Graph the following functions.

(a)	 s1x 2 
x  3

x2  3x
      (b)  t 1x 2 

x3  2x2

x  2

Solution 

(a)	 We factor the numerator and denominator:

s1x 2 
x  3

x2  3x

1x  3 2

x1x  3 2 
1
x

    for x ? 3

	 	� So s has the same graph as the rational function r1x 2  1/x but with a “hole” 
when x is 3, as shown in Figure 10(a).  
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SECTION 3.6  ■  Rational Functions  305

(b)	 We factor the numerator and denominator: 

t 1x 2 
x3  2x2

x  2


x21x  2 2
x  2

 x2    for x ? 2

	 	� So the graph of t is the same as the graph of r 1x 2  x2 but with a “hole” when x 
is 2, as shown in Figure 10(b).

Figure 10  Graphs with “holes”

(a) s(x)=1/x for x≠3

y

x10

1

s is not defined
for x=3

(b) t(x)=x™ for x≠2

y

x10

1

t is not
defined for
x=2

x-3
x™-3xs(x)=

x£-2x™
x-2t(x)=

Now Try  Exercise 63	 ■

■ S lant Asymptotes and End Behavior
If r 1x 2  P1x 2 /Q1x 2  is a rational function in which the degree of the numerator is one 
more than the degree of the denominator, we can use the Division Algorithm to express 
the function in the form

r 1x 2  ax  b 
R1x 2
Q1x 2

where the degree of R is less than the degree of Q and a ? 0. This means that as  
xS , R1x 2 /Q1x 2 S 0, so for large values of 0  x 0  the graph of y  r 1x 2  approaches 
the graph of the line y  ax  b. In this situation we say that y  ax  b is a slant 
asymptote, or an oblique asymptote.

Example 9  ■  A Rational Function with a Slant Asymptote

Graph the rational function r 1x 2 
x2  4x  5

x  3
.

Solution

Factor.    y 
1x  1 2 1x  5 2

x  3

x-Intercepts.    1 and 5, from x  1  0 and x  5  0

y-Intercept.  
5

3
, because r 10 2 

02  4 # 0  5

0  3


5

3

Vertical asymptote.    x  3, from the zero of the denominator

Behavior near vertical asymptote.    yS   as xS 3 and yS  as xS 3

Horizontal asymptote.    None, because the degree of the numerator is greater than 
the degree of the denominator
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Slant asymptote.    Since the degree of the numerator is one more than the degree of the 
denominator, the function has a slant asymptote. Dividing (see the margin), we obtain

r 1x 2  x  1 
8

x  3

Thus y  x  1 is the slant asymptote.

Graph.    We use the information we have found, together with some additional val-
ues, to sketch the graph in Figure 11.

x y

2 1.4
1 4
2 9
4 5
6 2.33

Figure 11 

x

5

y

2

≈-4x-5
x-3r(x)=

y=x-1

Slant
asymptote

Now Try Exercise 69	 ■

So far, we have considered only horizontal and slant asymptotes as end behaviors for 
rational functions. In the next example we graph a function whose end behavior is like 
that of a parabola.

Example 10  ■  End Behavior of a Rational Function
Graph the rational function

r 1x 2 
x3  2x2  3

x  2

and describe its end behavior.

Solution

Factor.    y 
1x  1 2 1x2  3x  3 2

x  2

x-Intercept.    1, from x  1  0 (The other factor in the numerator has no real 
zeros.)

y-Intercept.     

3

2
, because r 10 2 

03  2 # 02  3

0  2
  

3

2

Vertical asymptote.    x  2, from the zero of the denominator

Behavior near vertical asymptote.    yS  as xS 2 and yS   as xS 2

Horizontal asymptote.    None, because the degree of the numerator is greater than 
the degree of the denominator

End behavior.    Dividing (see the margin), we get

r 1x 2  x2 
3

x  2

This shows that the end behavior of r is like that of the parabola y  x2 because 
3/ 1x  2 2  is small when 0  x 0  is large. That is, 3/ 1x  2 2 S 0 as xS . This 
means that the graph of r will be close to the graph of y  x2 for large 0  x 0 .

x  1

x  3qx2  4x  5

x2  3x

x  5

x  3

8

x2

x  2qx3  2x2  0x  3

x3  2x2

3
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SECTION 3.6  ■  Rational Functions  307

Graph.    In Figure 12(a) we graph r in a small viewing rectangle; we can see the 
intercepts, the vertical asymptotes, and the local minimum. In Figure 12(b) we graph 
r in a larger viewing rectangle; here the graph looks almost like the graph of a parab-
ola. In Figure 12(c) we graph both y  r 1x 2  and y  x2; these graphs are very close 
to each other except near the vertical asymptote.

Now Try Exercise 77	 ■

■  Applications
Rational functions occur frequently in scientific applications of algebra. In the next 
example we analyze the graph of a function from the theory of electricity.

Example 11  ■  Electrical Resistance
When two resistors with resistances R1 and R2 are connected in parallel, their com-
bined resistance R is given by the formula

R 
R1R2

R1  R2

Suppose that a fixed 8-ohm resistor is connected in parallel with a variable resistor, as 
shown in Figure 13. If the resistance of the variable resistor is denoted by x, then the 
combined resistance R is a function of x. Graph R, and give a physical interpretation 
of the graph.

Solution    Substituting R1  8 and R2  x into the formula gives the function

R1x 2 
8x

8  x

Since resistance cannot be negative, this function has physical meaning only when 
x  0. The function is graphed in Figure 14(a) using the viewing rectangle 30, 204 by 
30, 104. The function has no vertical asymptote when x is restricted to positive values. 
The combined resistance R increases as the variable resistance x increases. If we 
widen the viewing rectangle to 30,1004 by 30, 104, we obtain the graph in Figure 14(b). 
For large x the combined resistance R levels off, getting closer and closer to the hori-
zontal asymptote R  8. No matter how large the variable resistance x, the combined 
resistance is never greater than 8 ohms.

Figure 14 

R 1x 2 
8x

8  x

10

0 20

(a)

10

0 100

(b)

Now Try Exercise 87	 ■

20

_20

_4 4

(a)

200

_200

_30 30

(b)

20

_5

_8 8

(c)

y=≈

Figure 12 

r 1x 2 
x3  2x2  3

x  2

x

8 ohms

Figure 13
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concepts
	 1.	 If the rational function y  r 1x 2  has the vertical asymptote 

		  x  2, then as xS 2, either yS   or  

yS    .

	 2.	 If the rational function y  r 1x 2  has the horizontal 

		  asymptote y  2, then yS   as xS.

3–6  ■  The following questions are about the rational function

r 1x 2 
1x  1 2 1x  2 2
1x  2 2 1x  3 2

	 3.	 The function r has x-intercepts   and    .

	 4.	 The function r has y-intercept    .

	 5.	 The function r has vertical asymptotes x    and 

		  x     .

	 6.	 The function r has horizontal asymptote y     .

7–8  ■  True or False? 

	 7.	 Let r 1x 2 
x2  x

1x  1 2 12x  4 2 . The graph of r has 

(a)	 vertical asymptote x  1.

(b)	 vertical asymptote x  2.

(c)	 horizontal asymptote y  1.

(d)	 horizontal asymptote y  1
2.

	 8.	 The graph of a rational function may cross a horizontal 
asymptote.

skills
9–12  ■  Table of Values    A rational function is given. (a) Com-
plete each table for the function. (b) Describe the behavior of the 
function near its vertical asymptote, based on Tables 1 and 2.  
(c) Determine the horizontal asymptote, based on Tables 3 and 4.

	 Table 1	 Table 2

	

x rxxc

1.5
1.9
1.99
1.999

	

x rxxc

2.5
2.1
2.01
2.001

	 Table 3	 Table 4

	

x rxxc

    10
    50
  100
1000

	

x rxxc

   10
    50
 100
1000

	 9.	 r 1x 2 
x

x  2
	 10.	 r 1x 2 

4x  1

x  2

	11.	 r 1x 2 
3x  10

1x  2 2 2 	 12.	 r 1x 2 
3x2  1

1x  2 2 2

13–20  ■  Graphing Rational Functions Using Transformations     
Use transformations of the graph of y  1/x to graph the rational 
function, and state the domain and range, as in Example 2.

13.	 r 1x 2 
1

x  1
	 14.	 r 1x 2 

1

x  4

15.	 s 1x 2 
3

x  1
	 16.	 s 1x 2 

2

x  2

17.	 t 1x 2 
2x  3

x  2
	 18.	 t 1x 2 

3x  3

x  2

19.	 r 1x 2 
x  2

x  3
	 20.	 r 1x 2 

2x  9

x  4

21–26  ■  Intercepts of Rational Functions    Find the x- and 
y-intercepts of the rational function.

	21.	 r 1x 2 
x  1

x  4
	 22.	 s 1x 2 

3x

x  5

	23.	 t 1x 2 
x2  x  2

x  6
	 24.	 r 1x 2 

2

x2  3x  4

	25.	 r 1x 2 
x2  9

x2 	 26.	 r 1x 2 
x3  8

x2  4

27–30  ■  Getting Information from a Graph    From the graph, 
determine the x- and y-intercepts and the vertical and horizontal 
asymptotes.

27.  y

x0

4

4

  28.  y

x0
1

2

29. 

10

2

3−3

y

x

  30. 

2

0 x

y

−4 4

−6

31–42  ■  Asymptotes    Find all horizontal and vertical asymp-
totes (if any).

31.	 r 1x 2 
5

x  2
	 32.	 r 1x 2 

2x  3

x 2  1

3.6 E xercises
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SECTION 3.6  ■  Rational Functions  309

33.	 r 1x 2 
3x  1

4x2  1
	 34.	 r 1x 2 

3x2  5x

x4  1

35.	 s 1x 2 
6x2  1

2x2  x  1
	 36.	 s 1x 2 

8x2  1

4x2  2x  6

37.	 r 1x 2 
1x  1 2 12x  3 2
1x  2 2 14x  7 2 	 38.	 r 1x 2 

1x  3 2 1x  2 2
15x  1 2 12x  3 2

39.	 r 1x 2 
6x3  2

2x3  5x2  6x
	 40.	 r 1x 2 

5x3

x3  2x2  5x

41.	 t 1x 2 
x2  2

x  1
	 42.	 r 1x 2 

x3  3x2

x2  4

43–62  ■  Graphing Rational Functions    Find the intercepts and 
asymptotes, and then sketch a graph of the rational function and 
state the domain and range. Use a graphing device to confirm 
your answer.

43.	 r 1x 2 
4x  4

x  2
	 44.	 r 1x 2 

2x  6

6x  3

	45.	 r 1x 2 
3x2  12x  13

x2  4x  4
	 46.	 r 1x 2 

2x2  8x  9

x2  4x  4

47.	 r 1x 2 
x2  8x  18

x2  8x  16
	 48.	 r 1x 2 

x2  2x  3

2x2  4x  2

49.	 s 1x 2 
4x  8

1x  4 2 1x  1 2 	 50.	 s 1x 2 
6

x2  5x  6

51.	 s 1x 2 
2x  4

x2  x  2
	 52.	 s 1x 2 

x  2

1x  3 2 1x  1 2

53.	 r 1x 2 
1x  1 2 1x  2 2
1x  1 2 1x  3 2 	 54.	 r 1x 2 

2x2  10x  12

x2  x  6

	55.	 r 1x 2 
2x2  2x  4

x2  x
	 56.	 r 1x 2 

3x2  6

x2  2x  3

	57.	 s 1x 2 
x2  2x  1

x3  3x2 	 58.	 r 1x 2 
x2  x  6

x2  3x

59.	 r 1x 2 
x2  2x  1

x2  2x  1
	 60.	 r 1x 2 

4x2

x2  2x  3

	61.	 r 1x 2 
5x2  5

x2  4x  4
	 62.	 t 1x 2 

x3  x2

x3  3x  2

63–68  ■  Rational Functions with Holes    Find the factors  
that are common in the numerator and the denominator.  
Then find the intercepts and asymptotes, and sketch a graph  
of the rational function. State the domain and range of the 
function.

	63.	 r 1x 2 
x2  4x  5

x2  x  2

	64.	 r 1x 2 
x2  3x  10

1x  1 2 1x  3 2 1x  5 2

	65.	 r 1x 2 
x2  2x  3

x  1

	66.	 r 1x 2 
x3  2x2  3x

x  3

	67.	 r 1x 2 
x3  5x2  3x  9

x  1
 �

[Hint: Check that x  1 is a factor of the numerator.]

	68.	 r 1x 2 
x2  4x  5

x3  7x2  10x

69–76  ■  Slant Asymptotes    Find the slant asymptote and the 
vertical asymptotes, and sketch a graph of the function.

69.	 r 1x 2 
x2

x  2
	 70.	 r 1x 2 

x2  2x

x  1

71.	 r 1x 2 
x2  2x  8

x
	 72.	 r 1x 2 

3x  x2

2x  2

73.	 r 1x 2 
x2  5x  4

x  3
	 74.	 r 1x 2 

x3  4

2x2  x  1

75.	 r 1x 2 
x3  x2

x2  4
	 76.	 r 1x 2 

2x3  2x

x2  1

skills plus
77–80  ■  End Behavior    Graph the rational function f, and deter-
mine all vertical asymptotes from your graph. Then graph f and g 
in a sufficiently large viewing rectangle to show that they have 
the same end behavior.

77.	 f 1x 2 
2x2  6x  6

x  3
, g1x 2  2x

78.	 f 1x 2 
x3  6x2  5

x2  2x
, g1x 2  x  4

79.	 f 1x 2 
x3  2x2  16

x  2
, g1x 2  x2

80.	 f 1x 2 
x4  2x3  2x

1x  1 2 2 , g1x 2  1  x2

81–86  ■  End Behavior    Graph the rational function, and find all 
vertical asymptotes, x- and y-intercepts, and local extrema, cor-
rect to the nearest tenth. Then use long division to find a polyno-
mial that has the same end behavior as the rational function, and 
graph both functions in a sufficiently large viewing rectangle to 
verify that the end behaviors of the polynomial and the rational 
function are the same.

81.	 y 
2x2  5x

2x  3

82.	 y 
x4  3x3  x2  3x  3

x2  3x

83.	 y 
x 5

x3  1
	 84.	 y 

x4

x2  2

85.	 r 1x 2 
x4  3x3  6

x  3
	 86.	 r 1x 2 

4  x2  x4

x2  1
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310  CHAPTER 3  ■  Polynomial and Rational Functions

applications
	87.	 Population Growth    Suppose that the rabbit population on 

Mr. Jenkins’ farm follows the formula

p1 t 2 
3000t

t  1

		  where t  0 is the time (in months) since the beginning of 
the year.

(a)	 Draw a graph of the rabbit population.

(b)	 What eventually happens to the rabbit population?

	88.	 Drug Concentration    After a certain drug is injected into a 
patient, the concentration c of the drug in the bloodstream is 
monitored. At time t  0 (in minutes since the injection) the 
concentration (in mg/L) is given by

c 1 t 2 
30t

t2  2

(a)	 Draw a graph of the drug concentration.

(b)	� What eventually happens to the concentration of drug in 
the bloodstream?

	89.	 Drug Concentration    A drug is administered to a patient, and 
the concentration of the drug in the bloodstream is moni-
tored. At time t  0 (in hours since giving the drug) the con-
centration (in mg/L) is given by

c 1 t 2 
5t

t2  1

		  Graph the function c with a graphing device.

(a)	� What is the highest concentration of drug that is reached 
in the patient’s bloodstream?

(b)	� What happens to the drug concentration after a long 
period of time?

(c)	� How long does it take for the concentration to drop 
below 0.3 mg/L?

	90.	 Flight of a Rocket    Suppose a rocket is fired upward from the 
surface of the earth with an initial velocity √ (measured in 
meters per second). Then the maximum height h (in meters) 
reached by the rocket is given by the function

h1√ 2 
R√ 

2

2gR  √ 
2

		  where R  6.4  106 m is the radius of the earth and  
g  9.8 m/s2 is the acceleration due to gravity. Use a graph-
ing device to draw a graph of the function h. (Note that h and 
√ must both be positive, so the viewing rectangle need not 
contain negative values.) What does the vertical asymptote 
represent physically?

	91.	 The Doppler Effect    As a train moves toward an observer (see 
the figure), the pitch of its whistle sounds higher to the 
observer than it would if the train were at rest, because the 
crests of the sound waves are compressed closer together. This 
phenomenon is called the Doppler effect. The observed pitch 
P is a function of the speed √ of the train and is given by

P1√ 2  P0 a
s0

s0  √
b

		  where P0 is the actual pitch of the whistle at the source and  

s0  332 m/s is the speed of sound in air. Suppose that a  
train has a whistle pitched at P0  440 Hz. Graph the func- 
tion y  P1√ 2  using a graphing device. How can the vertical 
asymptote of this function be interpreted physically?

	92.	 Focusing Distance    For a camera with a lens of fixed focal 
length F to focus on an object located a distance x from the 
lens, the film must be placed a distance y behind the lens, 
where F, x, and y are related by

1
x


1
y


1

F

		  (See the figure.) Suppose the camera has a 55-mm lens (F  55).

(a)	 Express y as a function of x, and graph the function.

(b)	� What happens to the focusing distance y as the object 
moves far away from the lens?

(c)	� What happens to the focusing distance y as the object 
moves close to the lens?

x F

y

DiSCUSS  ■  DISCOVER  ■  PROVE  ■  WRITE
	93.	 DISCUSS:  Constructing a Rational Function from Its  

Asymptotes    Give an example of a rational function that 
has vertical asymptote x  3. Now give an example of one 
that has vertical asymptote x  3 and horizontal asymptote  
y  2. Now give an example of a rational function with 
vertical asymptotes x  1 and x  1, horizontal asymp-
tote y  0, and x-intercept 4.

	94.	 DISCUSS:  A Rational Function with No Asymptote    Explain 
how you can tell (without graphing it) that the function

r 1x 2 
x6  10

x4  8x2  15

		  has no x-intercept and no horizontal, vertical, or slant asymp-
tote. What is its end behavior?’

3.7  Polynomial and Rational Inequalities
■  Polynomial Inequalities  ■  Rational Inequalities

In Section 1.8 we solved basic inequalities. In this section we solve more advanced 
inequalities by using the methods we learned in Section 3.4 for factoring and graphing 
polynomials. 

■  Polynomial Inequalities
An important consequence of the Intermediate Value Theorem (page 259) is that the 
values of a polynomial function P do not change sign between successive zeros. In other 
words, the values of P between successive zeros are either all positive or all negative. 
Graphically, this means that between successive x-intercepts, the graph of P is entirely 
above or entirely below the x-axis. Figure 1 illustrates this property of polynomials. This 
property of polynomials allows us to solve polynomial inequalities like P1x 2  0 by 
finding the zeros of the polynomial and using test points between successive zeros to 
determine the intervals that satisfy the inequality. We use the following guidelines.

SOLVING POLYNOMIAL INEQUALITIES

1.	� Move All Terms to One Side.    Rewrite the inequality so that all nonzero 
terms appear on one side of the inequality symbol.

2.	 Factor the Polynomial.    Factor the polynomial into irreducible factors, and 
find the real zeros of the polynomial.

3.	 Find the Intervals.    List the intervals determined by the real zeros.

4.	 Make a Table or Diagram.    Use test values to make a table or diagram of the 
signs of each factor in each interval. In the last row of the table determine 
the sign of the polynomial on that interval. 

5.	 Solve.    Determine the solutions of the inequality from the last row of the 
table. Check whether the endpoints of these intervals satisfy the inequality. 
(This may happen if the inequality involves  or .)
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	95.	 DISCOVER:  Transformations of y  1/x2    In Example 2 we 
saw that some simple rational functions can be graphed by 
shifting, stretching, or reflecting the graph of y  1/x. In 
this exercise we consider rational functions that can be 
graphed by transforming the graph of y  1/x2.

(a)	 Graph the function

r 1x 2 
1

1x  2 2 2

		 by transforming the graph of y  1/x2.

(b)	 Use long division and factoring to show that the function

s 1x 2 
2x2  4x  5

x2  2x  1

		 can be written as

s 1x 2  2 
3

1x  1 2 2

		 Then graph s by transforming the graph of y  1/x2.

(c)	� One of the following functions can be graphed by trans-
forming the graph of y  1/x2; the other cannot. Use 
transformations to graph the one that can be, and explain 
why this method doesn’t work for the other one.

p1x 2 
2  3x2

x2  4x  4
   q 1x 2 

12x  3x2

x2  4x  4

y

x

1

10

y= 1
≈

3.7  Polynomial and Rational Inequalities
■  Polynomial Inequalities  ■  Rational Inequalities

In Section 1.8 we solved basic inequalities. In this section we solve more advanced 
inequalities by using the methods we learned in Section 3.4 for factoring and graphing 
polynomials. 

■  Polynomial Inequalities
An important consequence of the Intermediate Value Theorem (page 259) is that the 
values of a polynomial function P do not change sign between successive zeros. In other 
words, the values of P between successive zeros are either all positive or all negative. 
Graphically, this means that between successive x-intercepts, the graph of P is entirely 
above or entirely below the x-axis. Figure 1 illustrates this property of polynomials. This 
property of polynomials allows us to solve polynomial inequalities like P1x 2  0 by 
finding the zeros of the polynomial and using test points between successive zeros to 
determine the intervals that satisfy the inequality. We use the following guidelines.

SOLVING POLYNOMIAL INEQUALITIES

1.	� Move All Terms to One Side.    Rewrite the inequality so that all nonzero 
terms appear on one side of the inequality symbol.

2.	 Factor the Polynomial.    Factor the polynomial into irreducible factors, and 
find the real zeros of the polynomial.

3.	 Find the Intervals.    List the intervals determined by the real zeros.

4.	 Make a Table or Diagram.    Use test values to make a table or diagram of the 
signs of each factor in each interval. In the last row of the table determine 
the sign of the polynomial on that interval. 

5.	 Solve.    Determine the solutions of the inequality from the last row of the 
table. Check whether the endpoints of these intervals satisfy the inequality. 
(This may happen if the inequality involves  or .)

Figure 1  P1x 2  0 or P1x 2  0 for x 
between successive zeros of P 

P(x)=4(x-2)(x+1)(x-0.5)(x+2)
y

x10

20
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312  CHAPTER 3  ■  Polynomial and Rational Functions

Example 1  ■  Solving a Polynomial Inequality
Solve the inequality 2x3  x2  6  13x.

Solution    We follow the preceding guidelines.

Move all terms to one side.    We move all terms to the left-hand side of the inequal-
ity to get 

2x3  x2  13x  6  0

The left-hand side is a polynomial.

Factor the polynomial.    This polynomial is factored in Example 2, Section 3.4, on 
page 277. We get

1x  2 2 12x  1 2 1x  3 2  0

The zeros of the polynomial are 3, 1
2, and 2.

Find the intervals.    The intervals determined by the zeros of the polynomial are

1, 3 2 , A3, 12B , A12, 2B , 12,  2
Make a table or diagram.    We make a diagram indicating the sign of each factor on 
each interval.

Sign of x-2

Sign of 2x-1

Sign of x  3 

Sign of (x-2)(2x-1)(x  3)

3

-

-

+

+

-

-

-

2

-

+

--

+

+

+

+

+

2
1

Solve.    From the diagram we see that the inequality is satisfied on the intervals 
A3, 12B  and 12,  2 . Checking the endpoints, we see that 3, 1

2, and 2 satisfy the 
inequality, so the solution is  C3, 12 

D < 32,  2 . The graph in Figure 2 confirms our 
solution.

Now Try Exercise 7	 ■

Example 2  ■  Solving a Polynomial Inequality
Solve the inequality 3x4  x2  4  2x3  12x.

Solution    We follow the above guidelines.

Move all terms to one side.    We move all terms to the left-hand side of the inequal-
ity to get 

3x4  2x3  x2  12x  4  0

The left-hand side is a polynomial.

Factor the polynomial.    This polynomial is factored into linear and irreducible qua-
dratic factors in Example 5, Section 3.5, page 291. We get 

1x  2 2 13x  1 2 1x2  x  2 2  0

From the first two factors we obtain the zeros 2 and 1
3. The third factor has no real 

zeros. 

Figure 2

y

0 x1

20
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Find the intervals.    The intervals determined by the zeros of the polynomial are

A, 1
3B , A1

3, 2B , 12,  2
Make a table or diagram.    We make a sign diagram.

Sign of x-2

Sign of 3x 1

Sign of x2  x 2 

Sign of (x-2)(3x 1)(x2  x 2)

2

-

+

+

-

-

-

+

+

+

+

+

+

3
1

Solve.    From the diagram we see that the inequality is satisfied on the interval 
A1

3, 2B . You can check that the two endpoints do not satisfy the inequality, so the 
solution is  A1

3, 2B . The graph in Figure 3 confirms our solution.

Now Try Exercise 13	 ■

■  Rational Inequalities
Unlike polynomial functions, rational functions are not necessarily continuous. The 
vertical asymptotes of a rational function r break up the graph into separate “branches.” 
So the intervals on which r does not change sign are determined by the vertical asymp-
totes as well as the zeros of r. This is the reason for the following definition: If 
r1x 2  P1x 2 /Q1x 2  is a rational function, the cut points of r are the values of x at which 
either P1x 2  0 or Q1x 2  0. In other words, the cut points of r are the zeros of the 
numerator and the zeros of the denominator (see Figure 4). So to solve a rational in-
equality like r 1x 2  0, we use test points between successive cut points to determine 
the intervals that satisfy the inequality. We use the following guidelines.

SOLVING RATIONAL INEQUALITIES

1.	� Move All Terms to One Side.    Rewrite the inequality so that all nonzero 
terms appear on one side of the inequality symbol. Bring all quotients to a 
common denominator. 

2.	� Factor Numerator and Denominator.    Factor the numerator and denominator 
into irreducible factors, and then find the cut points. 

3.	 Find the Intervals.    List the intervals determined by the cut points.

4.	� Make a Table or Diagram.    Use test values to make a table or diagram of the 
signs of each factor in each interval. In the last row of the table determine 
the sign of the rational function on that interval. 

5.	 Solve.    Determine the solution of the inequality from the last row of the 
table. Check whether the endpoints of these intervals satisfy the inequality. 
(This may happen if the inequality involves  or .)

Example 3  ■  Solving a Rational Inequality
Solve the inequality 

1  2x

x2  2x  3
 1

Figure 3

y

0 x1

10

Figure 4  r1x 2  0 or r1x 2  0 for x 
between successive cut points of r 

y

x20

1

x-2
(x-4)(x+3)r(x)=
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314  CHAPTER 3  ■  Polynomial and Rational Functions

Solution    We follow the above guidelines.

Move all terms to one side.    We move all terms to the left-hand side of the 
inequality. 

 
1  2x

x2  2x  3
 1  0        Move terms to LHS

 
11  2x 2  1x2  2x  3 2

x2  2x  3
 0        Common denominator

 
4  x2

x2  2x  3
 0        Simplify

The left-hand side of the inequality is a rational function.

Factor numerator and denominator.    Factoring the numerator and denominator, we get

12  x 2 12  x 2
1x  3 2 1x  1 2  0

The zeros of the numerator are 2 and 2, and the zeros of the denominator are 1 
and 3, so the cut points are 2, 1, 2, and 3.

Find the intervals.    The intervals determined by the cut points are

1, 2 2 , 12, 1 2 , 11, 2 2 , 12, 3 2 , 13,  2
Make a table or diagram.    We make a sign diagram.

Sign of 2-x

Sign of 2 x

Sign of x  3 

(2-x)(2  x)
(x  3)(x  1)

2 2

Sign of x  1 

+

+

-

+

-

+

-

-

-

-

+

-

-

+

+

-

+

-

+

+

Sign of

1 3

-

+

+

-

+

Solve.    From the diagram we see that the inequality is satisfied on the intervals 
12, 1 2  and 12, 3 2 . Checking the endpoints, we see that 2 and 2 satisfy the 
inequality, so the solution is  32, 1 2 < 32, 3 2 . The graph in Figure 5 confirms our 
solution.

Now Try Exercise 27	 ■

Example 4  ■  Solving a Rational Inequality
Solve the inequality 

x2  4x  3

x2  4x  5
 0

Solution    Since all nonzero terms are already on one side of the inequality symbol, 
we begin by factoring.

Factor numerator and denominator.    Factoring the numerator and denominator, we get

1x  3 2 1x  1 2
1x  5 2 1x  1 2  0

The cut points are 1, 1, 3, and 5.

Figure 5

y

x1

1

0
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Find the intervals.    The intervals determined by the cut points are

1, 1 2 , 11, 1 2 , 11, 3 2 , 13, 5 2 , 15,  2
Make a table or diagram.    We make a sign diagram.

Sign of x-5

Sign of x 3

Sign of x  1 

(x-3)(x  1)
(x  5)(x  1)

1 3

Sign of x  1 

-

-

-

-

+

-

-

-

+

-

-

+

+

-

+

-

+

+

-

+

Sign of

1 5

+

+

+

+

+

Solve.    From the diagram we see that the inequality is satisfied on the intervals 
1, 1 2 , 11, 3 2 ,  and 15,  2 . Checking the endpoints, we see that 1 and 3 satisfy the 
inequality, so the solution is 1, 1 2 < 31, 3 4 < 15,  2 . The graph in Figure 6 con-
firms our solution.

Now Try Exercise 23	 ■

We can also solve polynomial and rational inequalities graphically (see pages 120  
and 172). In the next example we graph each side of the inequality and compare the 
values of left- and right-hand sides graphically.

Example 5  ■  Solving a Rational Inequality Graphically
Two light sources are 10 m apart. One is three times as intense as the other. The light 
intensity L (in lux) at a point x meters from the weaker source is given by 

L1x 2 
10

x2 
30

110  x 2 2
(See Figure 7.) Find the points at which the light intensity is 4 lux or less.

Solution    We need to solve the inequality 

10

x2 
30

110  x 2 2  4

We solve the inequality graphically by graphing the two functions 

y1 
10

x2 
30

110  x 2 2     and    y2  4

In this physical problem the possible values of x are between 0 and 10, so we graph 
the two functions in a viewing rectangle with x-values between 0 and 10, as shown in 
Figure 8. We want those values of x for which y1  y2. Zooming in (or using the 
intersect command), we find that the graphs intersect at x  1.67431  and at 
x  7.19272, and between these x-values the graph of y1 lies below the graph of y2. 
So the solution of the inequality is the interval 11.67, 7.19 2 , rounded to two decimal 
places. Thus the light intensity is less than or equal to 4 lux when the distance from 
the weaker source is between 1.67 m and 7.19 m.

Now Try Exercises 45 and 55	 ■

See Appendix D, Using the  
TI-83/84 Graphing Calculator,  
for specific instructions. Go to  
www.stewartmath.com.
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316  CHAPTER 3  ■  Polynomial and Rational Functions

Concepts
	 1.	 To solve a polynomial inequality, we factor the polynomial 

		  into irreducible factors and find all the real   of the 
polynomial. Then we find the intervals determined by the 

		  real   and use test points in each interval to find the 
sign of the polynomial on that interval. Let 

P1x 2  x1x  2 2 1x  1 2 .
		  Fill in the diagram below to find the intervals on which 

P1x 2  0. 

x

Sign of

x+2

x-1 

x(x+2)(x-1)

2 10

		  From the diagram above we see that P1x 2  0 on the 

		  intervals   and    .

	 2.	 To solve a rational inequality, we factor the numerator and 
the denominator into irreducible factors. The cut points are 

		  the real   of the numerator and the real    
denominator. Then we find the intervals determined by the 

		       , and we use test points to find the sign 
of the rational function on each interval. Let 

r1x 2 
1x  2 2 1x  1 2
1x  3 2 1x  4 2

		  Fill in the diagram below to find the intervals on which 
r 1x 2  0.

x+2

Sign of

x-1

x-3 

(x+2)(x-1)
(x-3)(x+4)

4 1

x+4 

2 3

		  From the diagram we see that r 1x 2  0 on the intervals 

   ,    , and    .

Skills
3–16  ■  Polynomial Inequalities    Solve the inequality. 

	 3.	 1x  3 2 1x  5 2 12x  5 2  0	

	 4.	 1x  1 2 1x  2 2 1x  3 2 1x  4 2  0

	 5.	 1x  5 2 21x  3 2 1x  1 2  0	

	 6.	 12x  7 2 41x  1 2 31x  1 2  0

	 7.	 x3  4x2  4x  16	   8.	 2x3  18x  x2  9

	 9.	 2x3  x2  9  18x	 10.	 x4  3x3  x  3

	11.	 x4  7x2  18  0	 12.	 4x4  25x2  36  0

	13.	 x3  x2  17x  15  0	

	14.	 x4  3x3  3x2  3x  4  0

	15.	 x11  x2 2 3  711  x2 2 3	 16.	 x217  6x 2  1

17–36  ■  Rational Inequalities    Solve the inequality. 

	17.	
x  1

x  10
 0	 18.	

3x  7

x  2
 0

	19.	
2x  5

x2  2x  35
 0	 20.	

4x2  25

x2  9
 0

	21.	
x

x2  2x  2
 0	 22.	

x  1

2x2  4x  1
 0

	23.	
x2  2x  3

3x2  7x  6
 0	 24.	

x  1

x3  1
 0

	25.	
x3  3x2  9x  27

x  4
 0	 26.	

x2  16

x4  16
 0

	27.	
x  3

2x  5
 1	 28.	

1
x


1

x  1


2

x  2

	29.	 2 
1

1  x


3
x

	30.	
1

x  3


1

x  2


2x

x2  x  2

	31.	
1x  1 2 2

1x  1 2 1x  2 2  0	 32.	
x2  2x  1

x3  3x2  3x  1
 0

	33.	
6

x  1


6
x

 1	 34.	
x

2


5

x  1
 4

35.	
x  2

x  3


x  1

x  2
	 36.	

1

x  1


1

x  2


1

x  3

37–40  ■  Graphs of Two Functions    Find all values of x for 
which the graph of f lies above the graph of g. 

	37.	 f 1x 2  x2;  g1x 2  3x  10	

38. f 1x 2 
1
x

;  g1x 2 
1

x  1

	39.	 f 1x 2  4x;  g1x 2 
1
x

	 40.	 f 1x 2  x2  x;  g1x 2 
2
x

41–44  ■  Domain of a Function    Find the domain of the given 
function. 

	41.	 f 1x 2  "6  x  x2	 42.	 g1x 2  Å
5  x

5  x

	43.	 h1x 2  "4 x4  1	 44.	 f 1x 2 
1

"x4  5x2  4

3.7 E xercises
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CHAPTER 3  ■  Review  317

45–50  ■  Solving Inequalities Graphically    Use a graphing device 
to solve the inequality, as in Example 5. Express your answer 
using interval notation, with the endpoints of the intervals 
rounded to two decimals. 

	45.	 x3 2 2x2 2 5x 1 6 $ 0	 46.	 2x3 1 x2 2 8x 2 4 # 0

	47.	 2x3 2 3x 1 1 , 0	 48.	 x4 2 4x3 1 8x . 0

	49.	 5x4 , 8x3	 50.	 x5 1 x3 $ x2 1 6x

Skills Plus
51–52  ■  Rational Inequalities    Solve the inequality. (These 
exercises involve expressions that arise in calculus.)

	51.	
11 2 x 2 2

!x
$ 4!x1x 2 1 2

	52.	 2
3 x21/31x 1 2 2 1/2 1 1

2 x2/31x 1 2 221/2 , 0

	53.	 General Polynomial Inequality    Solve the inequality 

1x 2 a 2 1x 2 b 2 1x 2 c 2 1x 2 d 2 $ 0

		  where a , b , c , d.

	54.	 General Rational Inequality    Solve the inequality 

x2 1 1a 2 b 2x 2 ab

x 1 c
# 0

		  where 0 , a , b , c.

Applications
	55.	 Bonfire Temperature    In the vicinity of a bonfire the temper-

ature T (in °C) at a distance of x meters from the center of 
the fire is given by

T1x 2 5
500,000

x2 1 400

		  At what range of distances from the fire’s center is the tem-
perature less than 3008C?

	56.	 Stopping Distance    For a certain model of car the distance d 
required to stop the vehicle if it is traveling at √ mi/h is given 
by the function

d1 t 2 5 √ 1
√2

25

		  where d is measured in feet. Kerry wants her stopping dis-
tance not to exceed 175 ft. At what range of speeds can she 
travel?

	57.	 Managing Traffic    A highway engineer develops a formula to 
estimate the number of cars that can safely travel a particular 
highway at a given speed. She finds that the number N of cars 
that can pass a given point per minute is modeled by the 
function

N1x 2 5
88x

17 1 17a x

20
b

2

		  Graph the function in the viewing rectangle 30, 100 4  by 
30, 60 4 . If the number of cars that pass by the given point 
is greater than 40, at what range of speeds can the cars 
travel?

	58.	 Estimating Solar Panel Profits    A solar panel manufacturer 
estimates that the profit y (in dollars) generated by producing 
x solar panels per month is given by the equation 

S1x 2 5 8x 1 0.8x2 2 0.002x3 2 4000

		  Graph the function in the viewing rectangle 30, 400 4  by 
3210,000, 20,000 4 . For what range of values of x is the com-
pany’s profit greater than $12,000?

Quadratic Functions (pp. 246–251)
A quadratic function is a function of the form 

f 1x 2 5 ax2 1 bx 1 c

It can be expressed in the standard form

f 1x 2 5 a1x 2 h 2 2 1 k

by completing the square.

The graph of a quadratic function in standard form is a parabola 
with vertex 1h, k 2 .
If a . 0, then the quadratic function f has the minimum value k 
at x 5 h 5 2b/ 12a 2 .

If a , 0, then the quadratic function f has the maximum value k 
at x 5 h 5 2b/ 12a 2 .

Polynomial Functions (p. 254)
A polynomial function of degree n is a function P of the form

P 1x 2 5 an x n 1 an21x
n21 1 . . . 1 a1x 1 a0

(where an ? 0). The numbers ai are the coefficients of the poly-
nomial; an is the leading coefficient, and a0 is the constant coef-
ficient (or constant term).

The graph of a polynomial function is a smooth, continuous 
curve.

■  PROPERTIES AND FORMULAS

CHAPTER 3  ■  REVIEW
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318  CHAPTER 3  ■  Polynomial and Rational Functions

Real Zeros of Polynomials (p. 259)
A zero of a polynomial P is a number c for which P 1c 2  0.  
The following are equivalent ways of describing real zeros of 
polynomials:

1.	 c is a real zero of P.

2.	 x  c is a solution of the equation P1x 2  0.

3.	 x  c is a factor of P1x 2 .
4.	 c is an x-intercept of the graph of P.

Multiplicity of a Zero (pp. 262–263)
A zero c of a polynomial P has multiplicity m if m is the highest 
power for which 1x  c 2m is a factor of P1x 2 .

Local Maxima and Minima (p. 264)
A polynomial function P of degree n has n  1 or fewer local 
extrema (i.e., local maxima and minima).

Division of Polynomials (p. 269)
If P and D are any polynomials (with D1x 2 ? 0), then we can 
divide P by D using either long division or (if D is linear) syn-
thetic division. The result of the division can be expressed in one 
of the following equivalent forms:

 P 1x 2  D 1x 2 # Q 1x 2  R 1x 2

 
P 1x 2
D 1x 2  Q 1x 2 

R 1x 2
D 1x 2

In this division, P is the dividend, D is the divisor, Q is the quo-
tient, and R is the remainder. When the division is continued to 
its completion, the degree of R will be less than the degree of D 
(or R1x 2  0).

Remainder Theorem (p. 272)
When P1x 2  is divided by the linear divisor D1x 2  x  c, the  
remainder is the constant P1c 2 . So one way to evaluate a poly-
nomial function P at c is to use synthetic division to divide P1x 2  
by x  c and observe the value of the remainder.

Rational Zeros of Polynomials (pp. 275–277)
If the polynomial P given by

P 1x 2  an x n  an1x
n1  . . .  a1x  a0

has integer coefficients, then all the rational zeros of P have the 
form

x   

p

q

where p is a divisor of the constant term a0 and q is a divisor of 
the leading coefficient an.

So to find all the rational zeros of a polynomial, we list all the 
possible rational zeros given by this principle and then check to 
see which actually are zeros by using synthetic division.

Descartes’ Rule of Signs (pp. 278–279)
Let P be a polynomial with real coefficients. Then:

The number of positive real zeros of P either is the number of 
changes of sign in the coefficients of P1x 2  or is less than that by  
an even number.

The number of negative real zeros of P either is the number of 
changes of sign in the coefficients of P1x 2  or is less than that  
by an even number.

Upper and Lower Bounds Theorem (p. 279)
Suppose we divide the polynomial P by the linear expression 
x  c and arrive at the result

P1x 2  1x  c 2 # Q1x 2  r

If c  0 and the coefficients of Q, followed by r, are all nonnega-
tive, then c is an upper bound for the zeros of P.

If c  0 and the coefficients of Q, followed by r (including zero  
coefficients), are alternately nonnegative and nonpositive, then c 
is a lower bound for the zeros of P.

The Fundamental Theorem of Algebra, Complete 
Factorization, and the Zeros Theorem (p. 287)
Every polynomial P of degree n with complex coefficients has 
exactly n complex zeros, provided that each zero of multiplicity 
m is counted m times. P factors into n linear factors as follows:

P1x 2  a1x  c1 2 1x  c2 2 # # # 1x  cn 2
where a is the leading coefficient of P and c1, c1, . . . , cn are the  
zeros of P.

Conjugate Zeros Theorem (p. 291)
If the polynomial P has real coefficients and if a  bi is a zero of 
P, then its complex conjugate a  bi is also a zero of P.

Linear and Quadratic Factors Theorem (p. 292)
Every polynomial with real coefficients can be factored into lin-
ear and irreducible quadratic factors with real coefficients.

Rational Functions (p. 295)
A rational function r is a quotient of polynomial functions:

r 1x 2 
P1x 2
Q1x 2

We generally assume that the polynomials P and Q have no fac-
tors in common.

Asymptotes (pp. 296–297)
The line x  a is a vertical asymptote of the function y  f1x 2  if

yS      or    yS     as    xS a    or    xS a

The line y  b is a horizontal asymptote of the function  
y  f1x 2  if

yS b    as    xS      or    xS

Asymptotes of Rational Functions (pp. 298–300)

Let r 1x 2 
P1x 2
Q1x 2  be a rational function.

The vertical asymptotes of r are the lines x  a where a is a  
zero of Q.

If the degree of P is less than the degree of Q, then the horizontal 
asymptote of r is the line y  0.
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If the degrees of P and Q are the same, then the horizontal 
asymptote of r is the line y  b, where

b 
leading coefficient of P

leading coefficient of Q

If the degree of P is greater than the degree of Q, then r has no  
horizontal asymptote.

Polynomial and Rational Inequalities (pp. 311, 313)
A polynomial inequality is an inequality of the form P1x 2  0, 
where P is a polynomial. We solve P1x 2  0 by finding the zeros 

of P and using test points between successive zeros to determine 
the intervals that satisfy the inequality.

A rational inequality is an inequality of the form r 1x 2  0, 
where 

r 1x 2 
P1x 2
Q1x 2

is a rational function. The cut points of r are the values of x at 
which either P1x 2  0 or Q1x 2  0. We solve r 1x 2  0 by using 
test points between successive cut points to determine the inter-
vals that satisfy the inequality.

	 1.	 (a)	� What is the degree of a quadratic function f? What is the 
standard form of a quadratic function? How do you put a 
quadratic function into standard form?

(b)	� The quadratic function f 1x 2  a1x  h 2 2  k is in stan-
dard form. The graph of f is a parabola. What is the ver-
tex of the graph of f? How do you determine whether 
f 1h 2  k is a minimum or a maximum value?

(c)	� Express f 1x 2  x2  4x  1 in standard form. Find the 
vertex of the graph and the maximum or minimum value 
of f.

	 2.	 (a)	� Give the general form of polynomial function P of 
degree n.

(b)	� What does it mean to say that c is a zero of P? Give two 
equivalent conditions that tell us that c is a zero of P.

	 3.	 Sketch graphs showing the possible end behaviors of polyno-
mials of odd degree and of even degree.

	 4.	 What steps do you follow to graph a polynomial function P?

	 5.	 (a)	� What is a local maximum point or local minimum point 
of a polynomial P?

(b)	� How many local extrema can a polynomial P of degree n 
have?

	 6.	 When we divide a polynomial P1x 2  by a divisor D1x 2 , the 
Division Algorithm tells us that we can always obtain a quo-
tient Q1x 2  and a remainder R1x 2 . State the two forms in 
which the result of this division can be written.

	 7.	 (a)	 State the Remainder Theorem. 

(b)	 State the Factor Theorem. 

(c)	 State the Rational Zeros Theorem.

	 8.	 What steps would you take to find the rational zeros of a 
polynomial P?

	 9.	 Let P1x 2  2x4  3x3  x  15.

(a)	� Explain how Descartes’ Rule of Signs is used to deter-
mine the possible number of positive and negative real 
roots of P.

(b)	� What does it mean to say that a is a lower bound and b is 
an upper bound for the zeros of a polynomial?

(c)	� Explain how the Upper and Lower Bounds Theorem is 
used to show that all the real zeros of P lie between 3 
and 3. 

	10.	 (a)	 State the Fundamental Theorem of Algebra.

(b)	 State the Complete Factorization Theorem. 

(c)	 State the Zeros Theorem. 

(d)	 State the Conjugate Zeros Theorem. 

	11.	 (a)	 What is a rational function?

(b)	� What does it mean to say that x  a is a vertical asymp-
tote of y  f 1x 2 ?

(c)	� What does it mean to say that y  b is a horizontal 
asymptote of y  f 1x 2 ?

(d)	� Find the vertical and horizontal asymptotes of 

f 1x 2 
5x2  3

x2  4

	12.	 (a)	� How do you find vertical asymptotes of rational 
functions? 

(b)	� Let s be the rational function 

s1x 2 
anx

n  an1x
n1  . . .  a1x  a0

bmxm  bm1x
m1  . . .  b1x  b0

		 How do you find the horizontal asymptote of s? 

	13.	 (a)	� Under what circumstances does a rational function have 
a slant asymptote? 

(b)	� How do you determine the end behavior of a rational 
function? 

	14.	 (a)	� Explain how to solve a polynomial inequality.

(b)	 What are the cut points of a rational function? Explain 
how to solve a rational inequality. 

(c)	� Solve the inequality x2  9  8x.

■  Concept check

ANSWERS TO THE CONCEPT CHECK CAN BE FOUND AT THE BACK OF THE BOOK.
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1–4  ■  Graphs of Quadratic Functions    A quadratic function is 
given. (a) Express the function in standard form. (b) Graph the 
function.

	 1.	 f 1x 2  x2  6x  2	   2.	 f 1x 2  2x2  8x  4

	 3.	 f 1x 2  1  10x  x2	   4.	 g1x 2  2x2  12x

5–6  ■  Maximum and Minimum Values    Find the maximum or 
minimum value of the quadratic function.

	 5.	 f 1x 2  x2  3x  1	   6.	 f 1x 2  3x2  18x  5

	 7.	 Height of a Stone    A stone is thrown upward from the top of 
a building. Its height (in feet) above the ground after t sec-
onds is given by the function h1 t 2  16t2  48t  32. 
What maximum height does the stone reach?

	 8.	 Profit    The profit P (in dollars) generated by selling x units 
of a certain commodity is given by the function

P1x 2  1500  12x  0.004x2

		  What is the maximum profit, and how many units must be 
sold to generate it?

9–14  ■  Transformations of Monomials    Graph the polynomial 
by transforming an appropriate graph of the form y  xn. Show 
clearly all x- and y-intercepts.

	 9.	 P1x 2  x3  64	 10.	 P1x 2  2x3  16

	11.	 P1x 2  21x  1 2 4  32	 12.	 P1x 2  81  1x  3 2 4
	13.	 P1x 2  32  1x  1 2 5	 14.	 P1x 2  31x  2 2 5  96

15–18  ■  Graphing Polynomials in Factored Form    A polynomial 
function P is given. (a) Describe the end behavior. (b) Sketch a 
graph of P. Make sure your graph shows all intercepts.

15.	 P1x 2  1x  3 2 1x  1 2 1x  5 2
16.	 P1x 2  1x  5 2 1x2  9 2 1x  2 2
17.	 P1x 2  1x  1 2 21x  4 2 1x  2 2 2
18.	 P1x 2  x21x2  4 2 1x2  9 2

19–20  ■  Graphing Polynomials    A polynomial function P  
is given. (a) Determine the multiplicity of each zero of P.  
(b) Sketch a graph of P.

	19.	 P1x 2  x31x  2 2 2	 20.	 P1x 2  x1x  1 2 31x  1 2 2

21–24  ■  Graphing Polynomials    Use a graphing device to graph 
the polynomial. Find the x- and y-intercepts and the coordinates 
of all local extrema, correct to the nearest decimal. Describe the 
end behavior of the polynomial.

	21.	 P1x 2  x3  4x  1	 22.	 P1x 2  2x 3  6x2  2

	23.	 P1x 2  3x4  4x3  10x  1

	24.	 P1x 2  x5  x4  7x3  x2  6x  3

	25.	 Strength of a Beam    The strength S of a wooden beam of 
width x and depth y is given by the formula S  13.8xy 2.  

A beam is to be cut from a log of diameter 10 in., as shown 
in the figure.

(a)	 Express the strength S of this beam as a function of x only.

(b)	 What is the domain of the function S?

(c)	 Draw a graph of S.

(d)	 What width will make the beam the strongest?

	26.	 Volume    A small shelter for delicate plants is to be con-
structed of thin plastic material. It will have square ends and a 
rectangular top and back, with an open bottom and front, as 
shown in the figure. The total area of the four plastic sides is to 
be 1200 in2.

(a)	� Express the volume V of the shelter as a function of the 
depth x.

(b)	 Draw a graph of V.

(c)	� What dimensions will maximize the volume of the 
shelter?

x

y

x

27–34  ■  Division of Polynomials    Find the quotient and 
remainder.

	27.	
x2  5x  2

x  3
	 28.	

3x2  x  5

x  2

	29. 
2x3  x2  3x  4

x  5
	 30.	

x3  2x  4

x  7

	31.	
x4  8x2  2x  7

x  5 	
32.	

2x4  3x3  12

x  4

	33.	
2x3  x2  8x  15

x2  2x  1 	
34.	

x4  2x2  7x

x2  x  3

35–38  ■  Remainder Theorem    These exercises involve the 
Remainder Theorem.

	35.	 If P1x 2  2x3  9x2  7x  13, find P15 2 .
	36.	 If Q1x 2  x4  4x3  7x2  10x  15, find Q13 2 .

■ EXE RCISES
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CHAPTER 3  ■  Review  321

	37.	 What is the remainder when the polynomial 
P1x 2  x500  6x101  x2  2x  4 is divided by x  1?

	38.	 What is the remainder when the polynomial 
Q1x 2  x101  x4  2 is divided by x  1?

39–40  ■  Factor Theorem    Use the Factor Theorem to show that 
the statement in the exercise is true.

	39.	 Show that 1
2  is a zero of the polynomial

P1x 2  2x4  x3  5x2  10x  4

	40.	 Show that x  4 is a factor of the polynomial

P1x 2  x 5  4x 4  7x 3  23x2  23x  12

41–44  ■  Number of Possible Zeros    A polynomial P is given. 
(a) List all possible rational zeros (without testing to see  
whether they actually are zeros). (b) Determine the possible  
number of positive and negative real zeros using Descartes’  
Rule of Signs.

	41.	 P1x 2  x 5  6x 3  x2  2x  18

	42.	 P1x 2  6x4  3x3  x2  3x  4

	43.	 P1x 2  3x7  x5  5x4  x3  8

	44.	 P1x 2  6x10  2x8  5x3  2x2  12

45–52  ■  Finding Real Zeros and Graphing Polynomials    A poly-
nomial P is given. (a) Find all real zeros of P, and state their mul-
tiplicities. (b) Sketch the graph of P.

	45.	 P1x 2  x3  16x	 46.	 P1x 2  x3  3x2  4x

	47.	 P1x 2  x4  x3  2x2	 48.	 P1x 2  x4  5x2  4

49.	 P1x 2  x4  2x3  7x2  8x  12	

	50.	 P1x 2  x4  2x3  2x2  8x  8

	51.	 P1x 2  2x 4  x 3  2x2  3x  2

	52.	 P1x 2  9x5  21x4  10x3  6x2  3x  1

53–56  ■  Polynomials with Specified Zeros    Find a polynomial 
with real coefficients of the specified degree that satisfies the 
given conditions. 

	53.	 Degree 3;  zeros 1
2, 2, 3;  constant coefficient 12

	54.	 Degree 4;  zeros 4 (multiplicity 2) and 3i;  integer  
coefficients;  coefficient of x2  is 25 

	55.	 Complex Zeros of Polynomials    Does there exist a polyno-
mial of degree 4 with integer coefficients that has zeros i, 2i, 
3i, and 4i? If so, find it. If not, explain why.

	56.	 Polynomial with no Real Roots    Prove that the equation 
3x4  5x2  2  0 has no real root.

57–68  ■  Finding Real and Complex Zeros of Polynomials    Find 
all rational, irrational, and complex zeros (and state their multi-
plicities). Use Descartes’ Rule of Signs, the Upper and Lower 
Bounds Theorem, the Quadratic Formula, or other factoring tech-
niques to help you whenever possible.

57.	 P1x 2  x3  x2  x  1	 58.	 P1x 2  x3  8

59.	 P1x 2  x3  3x2  13x  15

	60.	 P1x 2  2x 3  5x2  6x  9

	61.	 P1x 2  x4  6x3  17x2  28x  20

	62.	 P1x 2  x4  7x3  9x2  17x  20

	63.	 P1x 2  x5  3x4  x3  11x2  12x  4

	64.	 P1x 2  x4  81

	65.	 P1x 2  x6  64

	66.	 P1x 2  18x3  3x2  4x  1

	67.	 P1x 2  6x4  18x3  6x2  30x  36

	68.	 P1x 2  x4  15x2  54

69–72  ■  Solving Polynomials Graphically    Use a graphing 
device to find all real solutions of the equation.

	69.	 2x2  5x  3

	70.	 x3  x2  14x  24  0

	71.	 x4  3x3  3x2  9x  2  0

	72.	 x5  x  3

73–74  ■  Complete Factorization    A polynomial function P  
is given. Find all the real zeros of P, and factor P completely  
into linear and irreducible quadratic factors with real  
coefficients.

	73.  P1x 2  x3  2x  4	 74.	 P1x 2  x4  3x2  4

75–78  ■  Transformations of y  1/x     A rational function is 
given. (a) Find all vertical and horizontal asymptotes, all x- and 
y-intercepts, and state the domain and range. (b) Use transforma-
tions of the graph of y  1/x to sketch a graph of the rational 
function, and state the domain and range of r.

75.  r 1x 2 
3

x  4 	
76.	 r 1x 2 

1

x  5

77.  r 1x 2 
3x  4

x  1
	 78.	 r 1x 2 

2x  5

x  2

79–84  ■  Graphing Rational Functions    Graph the rational func-
tion. Show clearly all x- and y-intercepts and asymptotes, and 
state the domain and range of r.

79.  r 1x 2 
3x  12

x  1
	 80.	 r 1x 2 

1

1x  2 2 2

81.  r 1x 2 
x  2

x2  2x  8
	 82.	 r 1x 2 

x3  27

x  4

83.  r 1x 2 
x2  9

2x2  1
	 84.	 r 1x 2 

2x2  6x  7

x  4

85–88  ■  Rational Functions with Holes    Find the common fac-
tors of the numerator and denominator of the rational function. 
Then find the intercepts and asymptotes, and sketch a graph. State 
the domain and range.

	85.	 r 1x 2 
x2  5x  14

x  2

	86.	 r 1x 2 
x3  3x2  10x

x  2
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322  CHAPTER 3  ■  Polynomial and Rational Functions

CHAPTER 3
	87.	 r 1x 2 

x2  3x  18

x2  8x  15

	88.r 1x 2 
x2  2x  15

x3  4x2  7x  10

89–92  ■  Graphing Rational Functions    Use a graphing device to 
analyze the graph of the rational function. Find all x- and 
y-intercepts and all vertical, horizontal, and slant asymptotes. If 
the function has no horizontal or slant asymptote, find a polyno-
mial that has the same end behavior as the rational function.

	89.	 r 1x 2 
x  3

2x  6	
  90.	 r 1x 2 

2x  7

x2  9

	91.	 r 1x 2 
x3  8

x2  x  2	
  92.	 r 1x 2 

2x 3  x2

x  1

93–96  ■  Polynomial Inequalities    Solve the inequality. 

	93.	 2x2  x  3	   94.	 x3  3x2  4x  12  0

	95.	 x4  7x2  18  0	   96.	 x8  17x4  16  0

97–100  ■  Rational Inequalities    Solve the inequality. 

	97.	
5

x3  x2  4x  4
 0	   98.	

3x  1

x  2


2

3

	99.	
1

x  2


2

x  3


3
x

	 100.	
1

x  2


3

x  3


4
x

101–102  ■  Domain of a Function    Find the domain of the given 
function. 

	101.	 f 1x 2  "24  x  3x2	 102.	 g1x 2 
1

"4 x  x4

103–104  ■  Solving Inequalities Graphically    Use a graphing 
device to solve the inequality. Express your answer using interval 
notation, with the endpoints of the intervals rounded to two 
decimals. 

	103.	 x4  x3  5x2  4x  5	

	104.	 x5  4x4  7x3  12x  2  0

	105.	 Application of Descartes’ Rule of Signs    We use  
Descartes’ Rule of Signs to show that a polynomial 
Q1x 2  2x3  3x2  3x  4 has no positive real zeros.

(a)	 Show that 1 is a zero of the polynomial 
P1x 2  2x4  5x3  x  4.

(b)	 Use the information from part (a) and Descartes’  
Rule of Signs to show that the polynomial 
Q1x 2  2x3  3x2  3x  4 has no positive real  
zeros.    [Hint: Compare the coefficients of the latter 
polynomial to your synthetic division table from  
part (a).]

	106.	 Points of Intersection    Find the coordinates of all points of 
intersection of the graphs of 

y  x4  x2  24x    and    y  6x3  20
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	 1.	 Express the quadratic function f 1x 2  x2  x  6 in standard form, and sketch its graph.

	 2.	 Find the maximum or minimum value of the quadratic function g1x 2  2x2  6x  3.

	 3.	 A cannonball fired out to sea from a shore battery follows a parabolic trajectory given by 
the graph of the equation

h1x 2  10x  0.01x2

	 	 where h1x 2  is the height of the cannonball above the water when it has traveled a horizon-
tal distance of x feet.

(a)	 What is the maximum height that the cannonball reaches?

(b)	 How far does the cannonball travel horizontally before splashing into the water?

	 4.	 Graph the polynomial P1x 2  1x  2 2 3  27, showing clearly all x- and y-intercepts.

	 5.	� (a)	� Use synthetic division to find the quotient and remainder when x4  4x2  2x  5 is  
divided by x  2.

		  (b)	� Use long division to find the quotient and remainder when 2x5  4x4  x3  x2  7 
is divided by 2x2  1.

	 6.	 Let P1x 2  2x 3  5x2  4x  3.

(a)	 List all possible rational zeros of P.

(b)	 Find the complete factorization of P.

(c)	 Find the zeros of P.

(d)	 Sketch the graph of P.

	 7.	 Find all real and complex zeros of P1x 2  x3  x2  4x  6.

	 8.	 Find the complete factorization of P1x 2  x 4  2x 3  5x2  8x  4.

	 9.	 Find a fourth-degree polynomial with integer coefficients that has zeros 3i and 1, with 
1 a zero of multiplicity 2.

	10.	 Let P1x 2  2x 4  7x 3  x2  18x  3.

(a)	� Use Descartes’ Rule of Signs to determine how many positive and how many negative 
real zeros P can have.

(b)	 Show that 4 is an upper bound and 1 is a lower bound for the real zeros of P.

(c)	� Draw a graph of P, and use it to estimate the real zeros of P, rounded to two decimal 
places.

(d)	 Find the coordinates of all local extrema of P, rounded to two decimals.

	11.	 Consider the following rational functions:

r 1x 2 
2x  1

x2  x  2      
s1x 2 

x3  27

x2  4          
t 1x 2 

x3  9x

x  2
  

  
u1x 2 

x2  x  6

x2  25
        „1x 2 

x3  6x2  9x

x  3

(a)	 Which of these rational functions has a horizontal asymptote?

(b)	 Which of these functions has a slant asymptote?

(c)	 Which of these functions has no vertical asymptote?

(d)	 Which of these functions has a “hole”?

(e)	 What are the asymptotes of the function r 1x 2 ?
(f)	� Graph y  u1x 2 , showing clearly any asymptotes and x- and y-intercepts the function  

may have.

(g)	� Use long division to find a polynomial P that has the same end behavior as t. Graph 
both P and t on the same screen to verify that they have the same end behavior.

h(x)

x

CHAPTER 3 TEST
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324  CHAPTER 3  ■  Test

	 FOCUS ON MODELING
	12.	 Solve the rational inequality x 

6  x

2x  5
.

	13.	 Find the domain of the function f 1x 2 
1

"4  2x  x2
.

	14.	 (a)	� Choosing an appropriate viewing rectangle, graph the following function and find all 
its x-intercepts and local extrema, rounded to two decimals.

P1x 2  x4  4x3  8x

(b)	 Use your graph from part (a) to solve the inequality 

x4  4x3  8x  0

		 Express your answer in interval form, with the endpoints rounded to two decimals.
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325

We have learned how to fit a line to data (see Focus on Modeling, page 139). The line 
models the increasing or decreasing trend in the data. If the data exhibit more variabil-
ity, such as an increase followed by a decrease, then to model the data, we need to use 
a curve rather than a line. Figure 1 shows a scatter plot with three possible models that 
appear to fit the data. Which model fits the data best?

Figure 1

y

x

y

x
Linear model Quadratic model Cubic model

y

x

■  Polynomial Functions as Models
Polynomial functions are ideal for modeling data for which the scatter plot has peaks 
or valleys (that is, local maxima or minima). For example, if the data have a single peak 
as in Figure 2(a), then it may be appropriate to use a quadratic polynomial to model the 
data. The more peaks or valleys the data exhibit, the higher the degree of the polynomial 
needed to model the data (see Figure 2).

(a) (b) (c)

y

x

y

x

y

x

Figure 2

Graphing calculators are programmed to find the polynomial of best fit of a 
specified degree. As is the case for lines (see page 140), a polynomial of a given degree 
fits the data best if the sum of the squares of the distances between the graph of the 
polynomial and the data points is minimized.

Example 1  ■  Rainfall and Crop Yield
Rain is essential for crops to grow, but too much rain can diminish crop yields. The 
data on the next page give rainfall and cotton yield per acre for several seasons in a 
certain county.

(a)	� Make a scatter plot of the data. What degree polynomial seems appropriate for 
modeling the data?

(b)	� Use a graphing calculator to find the polynomial of best fit. Graph the polynomial 
on the scatter plot.

(c)	 Use the model that you found to estimate the yield if there are 25 in. of rainfall.

Fitting Polynomial Curves to Data	 FOCUS ON MODELING
De
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326  Focus on Modeling

Season Rainfall (in.) Yield (kg/acre)

  1 23.3 5311
  2 20.1 4382
  3 18.1 3950
  4 12.5 3137
  5 30.9 5113
  6 33.6 4814
  7 35.8 3540
  8 15.5 3850
  9 27.6 5071
10 34.5 3881

SOLUTION

(a)	� The scatter plot is shown in Figure 3. The data appear to have a peak, so it is 
appropriate to model the data by a quadratic polynomial (degree 2).

Figure 3  Scatter plot of yield versus 
rainfall data

6000

1500
4010

(b)	� Using a graphing calculator, we find that the quadratic polynomial of best fit is

y  12.6x2  651.5x  3283.2

	� The calculator output and the scatter plot, together with the graph of the quadratic 
model, are shown in Figure 4.

6000

1500
4010

(a) (b)Figure 4

(c)	 Using the model with x  25, we get

y  12.6125 2 2  651.5125 2  3283.2  5129.3

	 We estimate the yield to be about 5130 kg/acre.� ■

Example 2  ■  Length-at-Age Data for Fish
Otoliths (“earstones”) are tiny structures that are found in the heads of fish. Microscopic 
growth rings on the otoliths, not unlike growth rings on a tree, record the age of a fish. 
The following table gives the lengths of rock bass caught at different ages, as deter-
mined by the otoliths. Scientists have proposed a cubic polynomial to model this data.

(a)	 Use a graphing calculator to find the cubic polynomial of best fit for the data.

(b)	 Make a scatter plot of the data, and graph the polynomial from part (a).

(c)	� A fisherman catches a rock bass 20 in. long. Use the model to estimate its age.Otoliths for several fish species

Cod Redfish Hake
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   Fitting Polynomial Curves to Data  327

Age (yr) Length (in.) Age (yr) Length (in.)

1   4.8   9 18.2
2   8.8   9 17.1
2   8.0 10 18.8
3   7.9 10 19.5
4 11.9 11 18.9
5 14.4 12 21.7
6 14.1 12 21.9
6 15.8 13 23.8
7 15.6 14 26.9
8 17.8 14 25.1

SOLUTION

(a)	�� Using a graphing calculator (see Figure 5(a)), we find the cubic polynomial of  
best fit:

y  0.0155x3  0.372x2  3.95x  1.21

(b)	� The scatter plot of the data and the cubic polynomial are graphed in Figure 5(b).

30

0 15

(a) (b)Figure 5

(c)	� Moving the cursor along the graph of the polynomial, we find that y  20 when  
x  10.8. Thus the fish is about 11 years old.� ■

Problems
	 1.	 Tire Inflation and Treadwear    Car tires need to be inflated properly. Overinflation or 

underinflation can cause premature treadwear. The data in the margin show tire life for dif-
ferent inflation values for a certain type of tire.

(a)	� Find the quadratic polynomial that best fits the data.

(b)	� Draw a graph of the polynomial from part (a) together with a scatter plot of the data.

(c)	� Use your result from part (b) to estimate the pressure that gives the longest tire life.

	 2.	 �Too Many Corn Plants per Acre?    The more corn a farmer plants per acre, the greater 
is the yield the farmer can expect, but only up to a point. Too many plants per acre can 
cause overcrowding and decrease yields. The data give crop yields per acre for various 
densities of corn plantings, as found by researchers at a university test farm.

(a)	� Find the quadratic polynomial that best fits the data.

(b)	� Draw a graph of the polynomial from part (a) together with a scatter plot of the data.

(c)	� Use your result from part (b) to estimate the yield for 37,000 plants per acre.

Density (plants/acre) 15,000 20,000 25,000 30,000 35,000 40,000 45,000 50,000

Crop yield (bushels/acre) 43 98 118 140 142 122 93 67

Pressure 
(lb/in2)

Tire life  
(mi)

26 50,000
28 66,000
31 78,000
35 81,000
38 74,000
42 70,000
45 59,000
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328  Focus on Modeling

	 3.	 �How Fast Can You List Your Favorite Things?    If you are asked to make a list of objects in 
a certain category, how fast you can list them follows a predictable pattern. For example, if 
you try to name as many vegetables as you can, you’ll probably think of several right away—
for example, carrots, peas, beans, corn, and so on. Then after a pause you might think of ones 
you eat less frequently—perhaps zucchini, eggplant, and asparagus. Finally, a few more ex-
otic vegetables might come to mind—artichokes, jicama, bok choy, and the like. A psycholo-
gist performs this experiment on a number of subjects. The table below gives the average 
number of vegetables that the subjects named by a given number of seconds.

(a)	� Find the cubic polynomial that best fits the data.

(b)	� Draw a graph of the polynomial from part (a) together with a scatter plot of the data.

(c)	� Use your result from part (b) to estimate the number of vegetables that subjects would 
be able to name in 40 s.

(d)	� According to the model, how long (to the nearest 0.1 s) would it take a person to name 
five vegetables?

Seconds
Number of 
vegetables

  1   2
  2   6
  5 10
10 12
15 14
20 15
25 18
30 21

	 4.	 �Height of a Baseball    A baseball is thrown upward, and its height is measured at  
0.5-s intervals using a strobe light. The resulting data are given in the table.

(a)	� Draw a scatter plot of the data. What degree polynomial is appropriate for modeling  
the data?

(b)	� Find a polynomial model that best fits the data, and graph it on the scatter plot.

(c)	� Find the times when the ball is 20 ft above the ground.

(d)	� What is the maximum height attained by the ball?

	 5.	 �Torricelli’s Law    Water in a tank will flow out of a small hole in the bottom faster when 
the tank is nearly full than when it is nearly empty. According to Torricelli’s Law, the 
height h1 t 2  of water remaining at time t is a quadratic function of t.

		      A certain tank is filled with water and allowed to drain. The height of the water is mea-
sured at different times as shown in the table.

(a)	� Find the quadratic polynomial that best fits the data.

(b)	� Draw a graph of the polynomial from part (a) together with a scatter plot of the data.

(c)	� Use your graph from part (b) to estimate how long it takes for the tank to drain  
completely.

Time (min) Height (ft)

  0 5.0
  4 3.1
  8 1.9
12 0.8
16 0.2

Time (s) Height (ft)

0 4.2
0.5 26.1
1.0 40.1
1.5 46.0
2.0 43.9
2.5 33.7
3.0 15.8
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