
September 20

I finished discussing ‘Completing the Square’, but I don’t think I was very
clear, so I’ll just tell you the punchline:

If you have the quadratic polynomial expression
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This let’s us solve for x to make the quadratic polynomial equal to 0 (this
looks scary, but ignore it and see the next page):
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This is the usual quadratic formula. In the third line, we took a square
root. In our class, the symbol

√
always means ‘the positive square root’, so

if we don’t remember there is also a negative square root, we will miss part of
the answer. There can be two solutions to a quadratic equation (sometimes
there is only one, like in (x+1)2 = x2+2x+1 = 0, and sometimes there are
no solutions, like x2 + 1 = 0).

NOW, I know that algebra was nasty. That’s because we jumped in
without thinking: a little algebra at the beginning can avoid lots of algebra
later. What I mean here is, if we want to solve the equation

ax2 + bx+ c = 0,

we can divide both sides by a and get the equation
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So again we get the usual quadratic formula. I think it’s a little easier to
divide by a first. Of course, you can just memorize the quadratic formula,
but it’s good to know that it comes from somewhere, and you could figure it
out.

2



You might be complaining, how would we know to add and subtract that
exact thing? Just guessing, or me telling you what to do? Isn’t that the
same as memorizing a formula? Well, I also claim there’s a reason to think
of doing this. Namely, this picture:

Some examples with actual numbers:
Solve x2 + 3x+ 2 = 0: Here, a = 1 so we don’t need to divide, and b = 3
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(notice you could also factor this equation)
Another example: Solve x2+9x+5 = 0. Again, a = 1 so we don’t need to

worry about it. Here b = 9 so b
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You can (and should) check that this is the same as what you get with
the quadratic formula.

Another example: Solve 4x2 + 2x− 8 = 0. Here a = 4, so I find it easier
to divide everything by 4:

4x2 + 2x− 8 = 0
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Now we have a quadratic with leading coefficient 1, and linear coefficient
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b = 1
2
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Let’s check that this works: set x = −1+
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equation:
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So x = −1+
√
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is a solution to this polynomial equation. I’ll let you check

that the other answer we got, with −
√
33 in the numerator, is also a true

solution.
Of course, you can also get this answer from the quadratic formula.
Then, I did some examples of turning equations which may not seem

quadratic into quadratic equations:
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Solve x =
√
x+ 6.

To do this, square both sides to get
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2
= x+ 6

or
x2 − x− 6 = 0

We can factor this by noticing 2 · (−3) = −6 and 2 + (−3) = −1, so

x2 − x− 6 = (x− 3)(x+ 2) = 0,

So we have either x = 3 or x = −2. If we think about the original
equation, x =

√
x+ 6, we see x = 3 is a solution: 3 =
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Is x = −2 a solution? Remember we said the symbol
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the positive square root, so if we check x = −2 we get
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which is wrong! When we squared both sides, we forgot about the difference
between negative and positive (since the square of a negative number is
positive, just like the square of a positive number). This gave us an extra
solution, often called an extraneous solution to sound fancy.

Another example: Find x so that
√
5x+ 11− 1 = x

Here, add 1 to both sides to get the
√

symbol by itself:
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then square both sides
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0 = x2 − 3x− 10
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Here, you might again notice that the quadratic factors

0 = x2 − 3x− 10 = (x+ 2)(x− 5)

So we get either x = −2 or x = 5.
Checking x = 5: we have

√
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=
√
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so x = 5 really is a solution.
On the other hand, checking x = −2:
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so x = −2 is not a solution to our original equation, even though it is a
solution to the squared equation.
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